Dem Sauerstoff mit Katalyse auf die Sprünge helfen

Neuer Sonderforschungsbereich an der Uni Stuttgart

Wenn Luftsauerstoff nicht so ein träger Geselle in chemischen Reaktionen bei Atmosphärendruck und Raumtemperatur wäre, würden sämtliche Lebewesen auf der Erde aufgrund von Oxidationen in kürzester Zeit zu Staub und Asche zerfallen. Bei hohen Temperaturen reagiert nämlich Sauerstoff durchaus bereitwillig, aber völlig unselektiv mit organischen Verbindungen zu komplexen Produktgemischen. Wenn es gelingen würde, die Reaktivität von Sauerstoff zu erhöhen und gleichzeitig die Selektivität solcher Oxidationen zu verbessern, also aus einem bestimmten Ausgangsmolekül nur ein definiertes Produkt zu bilden, wäre dies für die Grundlagenforschung und die industrielle Anwendung von besonderem Interesse: Derartige Oxidationsprodukte sind wichtige Zwischenstufen auf dem Weg vom Erdöl beziehungsweise nachwachsenden Rohstoffen (wie beispielsweise Zucker) zu höher veredelten Feinchemikalien, Farbstoffen, Polymerbausteinen und pharmazeutischen Wirkstoffen. Dieses ehrgeizige und langfristige Ziel haben sich Chemiker, Verfahrenstechniker, Mikrobiologen, Physiologen und Biotechnologen der Universitäten Stuttgart und Hohenheim gestellt. Insgesamt 22 Arbeitsgruppen aus elf Instituten sind beteiligt. Sprecherhochschule ist die Universität Stuttgart.

Die umfassende Erforschung der Nutzbarmachung von Sauerstoff durch Katalyse steht im Mittelpunkt des neuen Sonderforschungsbereiches (SFB) „Katalytische Selektivoxidationen von C-H-Bindungen mit molekularem Sauerstoff“ unter Leitung der Professorin Sabine Laschat vom Institut für Organische Chemie der Universität Stuttgart. Der neue SFB wurde von der Deutschen Forschungsgemeinschaft vor wenigen Tagen bewilligt und wird ab Januar 2006 für einen Zeitraum von zunächst vier Jahren mit 7,7 Millionen Euro gefördert. Unter Katalyse verstehen die Naturwissenschaftler die Durchführung einer chemischen Reaktion, bei der ein zusätzlicher Stoff, der so genannte Katalysator, den Prozess maßgeblich beschleunigt, ohne dabei verbraucht zu werden. Die Forscher setzen dabei ihre Hoffnung auf Feststoffkatalysatoren, wie sie zum Beispiel aus Autoabgaskatalysa-toren bekannt sind, edelmetallhaltige lösliche Katalysatoren sowie Enzyme und Mikroorganismen als Biokatalysatoren. Mit Hilfe von maßgeschneiderten Katalysatorsystemen sowie neuen spektroskopischen und theoretischen Methoden soll innerhalb der gesamten Laufzeit des SFB von zwölf Jahren ein molekulares Bild der Katalyse entwickelt werden. Die Stuttgarter und Hohenheimer Forscher sind sich darin einig, dass die interdisziplinäre Vorgehensweise und die sehr guten Arbeitsmöglichkeiten an den beiden Universitäten maßgeblich zu ihrem Erfolg in dem äußerst kompetitiven Begutachtungsverfahren beigetragen haben. Als Anerkennung der bisherigen Forschungsleistungen und als deutliche Stärkung des Forschungsstandorts Stuttgart wertet der Stuttgarter Uni-Rektor Prof. Dieter Fritsch den neuen Sonderforschungsbereich.

Neben dem neu bewilligten SFB sind an der Universität Stuttgart zur Zeit sieben weitere SFBs, ein weiterer transregionaler SFB mit den Universitäten Tübingen und Ulm angesiedelt sowie vier Transferbereiche, die der Überführung der in SFBs erzielten Ergebnisse in die Praxis dienen.

Weitere Informationen bei
Prof. Dr. Sabine Laschat, Institut für Organische Chemie der Universität Stuttgart, Tel. 0711/685-4565, Fax 0711/685-4285, e-mail: sabine.laschat@oc.uni-stuttgart.de

Media Contact

Ursula Zitzler idw

Weitere Informationen:

http://www.uni-stuttgart.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer