Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biologische Festkörper NMR-Spektroskopie bei höchsten Feldstärken

23.11.2005


Zentrum für Biomolekulare Magnetische Resonanz erhält als zweite Institution weltweit eines der leistungsstärksten Geräte



Die DFG hat mehrere Millionen Euro für die Anschaffung eines 850 MHz Festkörper NMR-Spektrometers bewilligt. Es wird im Zentrum für Biomolekulare Magnetische Resonanz des Fachbereichs Biochemie, Chemie und Pharmazie im Labor von Prof. Clemens Glaubitz installiert und betrieben. Das Gerät wird voraussichtlich ab 2007 verfügbar sein.



Damit wird in Frankfurt das zweite 850 MHz Festkörper NMR-Spektrometer weltweit für die biomolekulare Forschung zur Verfügung stehen.

Die bisher für die Festkörper NMR genutzten Spektrometer arbeiten bei bis zu 750MHz; in Frankfurt bei 400 und 600MHz. Für Arbeiten an Molekülen in der flüssigen Phase leisten die Geräte bis zu 900MHz. Diese Frequenz bezeichnet die Präzession, also die Kreiselbewegung der Protonen der Probe um das angelegte Magnetfeld. Je schneller sie kreiseln, desto höher ist die spektrale Empfindlichkeit und die Auflösung des Gerätes. Der Einsatz des neuen Gerätes in Frankfurt zielt daher auf eine signifikante Empfindlichkeitssteigerung der Festkörper NMR durch höhere Feldstärken aber auch durch bessere Detektionssysteme.

Festkörper NMR (nuclear magnetic resonance) kommt insbesondere dann zur Anwendung, wenn die zu untersuchenden biomolekularen Systeme sich auf der Zeitskala der NMR-Spektroskopie sehr langsam oder fast nicht bewegen, also sich scheinbar wie "Festkörper" verhalten. Hierzu gehören insbesondere unlösliche Systeme wie Membranproteine, fibrillenbildende globuläre Proteine oder einfach sehr große molekulare Komplexe.

Die Arbeitsgruppe um Prof. Clemens Glaubitz beschäftigt sich vor allem mit Membranproteinen. Ein Schwerpunkt liegt herbei im Verständnis der Arbeitsweise bakterieller Multidrug-Transporter. Das sind integrale Membranproteine, die Antibiotika aus der Zelle durch die Membran transportieren und somit deren Resistenz erhöhen.

Festkörper NMR kommt auch zum Einsatz, um die Struktur von Hormonen, die an GPCRs (G-protein coupled receptors) gebunden sind, zu bestimmen. GPCRs gehören zu den pharmakologisch bedeutsamsten Membranproteinen und stellen wichtige ’Ziele’ (Targets) für die Medikamentenentwicklung dar. Hier bestehen enge Kooperationen mit dem Frankfurter Max-Planck-Institut für Biophysik; Prof. Helmut Michel.

Ein dritter Themenschwerpunkt richtet sich auf retinal-basierte Photosynthese in der durchlichteten Zone der Ozeane. Festkörper NMR wird hier eingesetzt, um Struk- tur, Funktion und Dynamik retinal-tragender Membranproteine aus gamma-Proteobakterien aus dem Plankton der Ozeane aufzuklären. Genauere Untersuchungen sollen Aufschluss darüber geben, wie diese Art der Photosynthese funktioniert. Bislang ging man von der Annahme aus, dass die meiste Energie vor allem auf Basis von Chlorophyll erzeugt wird.

Mit der Bewilligung dieses Gerätes folgt die DFG auch dem Konzept eines interuniversitären NMR-Zentrums, denn Gruppen aus Regensburg, Jena und Berlin werden zusätzlich Messzeit in Frankfurt erhalten, um an RNA-Protein-Komplexen, Membranproteinen sowie an siliziumhaltigen Zellwänden zu forschen. In Frankfurt werden nicht nur die Forschungsgruppen des BMRZ - Prof. Harald Schwalbe, Prionenproteine, RNA-Protein-Interaktionen, Prof. Volker Dötsch; große Proteinkomplexe, sondern auch die Projekte der SFBs Molekulare Bioenergetik (478), Functional Membrane Proteomics (628), RNA-Ligand Interactions (579) sowie des CMP profitieren. Die Bedeutung des BMRZ wird auch durch seine Funktion als Euroean Large Scale Facility unterstrichen.

Die Beschaffung dieses Hochleistungsspektrometers folgt einer gemeinsamen Initiative mit dem Göttinger MPI für Biophysikalische Chemie zur Verbesserung der verfügbaren Messempfindlichkeit der Festkörper NMR und deren Anwendung auf Membranproteine und aggregierte Proteinzustände.

Kontakt: Prof. Clemens Glaubitz; Institute for Biophysical Chemistry
Centre for Biomolecular Magnetic Resonance; Marie Curie Str. 9; 60439 Frankfurt; Tel.: 069-798-29927; Fax.: 069-798-29929; E-Mail: glaubitz@em.uni-frankfurt.de

Dr. Ralf Breyer | idw
Weitere Informationen:
http://www.biophyschem.uni-frankfurt.de

Weitere Berichte zu: Feldstärke Festkörper Membranprotein NMR NMR-Spektroskopie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik