Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biologische Festkörper NMR-Spektroskopie bei höchsten Feldstärken

23.11.2005


Zentrum für Biomolekulare Magnetische Resonanz erhält als zweite Institution weltweit eines der leistungsstärksten Geräte



Die DFG hat mehrere Millionen Euro für die Anschaffung eines 850 MHz Festkörper NMR-Spektrometers bewilligt. Es wird im Zentrum für Biomolekulare Magnetische Resonanz des Fachbereichs Biochemie, Chemie und Pharmazie im Labor von Prof. Clemens Glaubitz installiert und betrieben. Das Gerät wird voraussichtlich ab 2007 verfügbar sein.



Damit wird in Frankfurt das zweite 850 MHz Festkörper NMR-Spektrometer weltweit für die biomolekulare Forschung zur Verfügung stehen.

Die bisher für die Festkörper NMR genutzten Spektrometer arbeiten bei bis zu 750MHz; in Frankfurt bei 400 und 600MHz. Für Arbeiten an Molekülen in der flüssigen Phase leisten die Geräte bis zu 900MHz. Diese Frequenz bezeichnet die Präzession, also die Kreiselbewegung der Protonen der Probe um das angelegte Magnetfeld. Je schneller sie kreiseln, desto höher ist die spektrale Empfindlichkeit und die Auflösung des Gerätes. Der Einsatz des neuen Gerätes in Frankfurt zielt daher auf eine signifikante Empfindlichkeitssteigerung der Festkörper NMR durch höhere Feldstärken aber auch durch bessere Detektionssysteme.

Festkörper NMR (nuclear magnetic resonance) kommt insbesondere dann zur Anwendung, wenn die zu untersuchenden biomolekularen Systeme sich auf der Zeitskala der NMR-Spektroskopie sehr langsam oder fast nicht bewegen, also sich scheinbar wie "Festkörper" verhalten. Hierzu gehören insbesondere unlösliche Systeme wie Membranproteine, fibrillenbildende globuläre Proteine oder einfach sehr große molekulare Komplexe.

Die Arbeitsgruppe um Prof. Clemens Glaubitz beschäftigt sich vor allem mit Membranproteinen. Ein Schwerpunkt liegt herbei im Verständnis der Arbeitsweise bakterieller Multidrug-Transporter. Das sind integrale Membranproteine, die Antibiotika aus der Zelle durch die Membran transportieren und somit deren Resistenz erhöhen.

Festkörper NMR kommt auch zum Einsatz, um die Struktur von Hormonen, die an GPCRs (G-protein coupled receptors) gebunden sind, zu bestimmen. GPCRs gehören zu den pharmakologisch bedeutsamsten Membranproteinen und stellen wichtige ’Ziele’ (Targets) für die Medikamentenentwicklung dar. Hier bestehen enge Kooperationen mit dem Frankfurter Max-Planck-Institut für Biophysik; Prof. Helmut Michel.

Ein dritter Themenschwerpunkt richtet sich auf retinal-basierte Photosynthese in der durchlichteten Zone der Ozeane. Festkörper NMR wird hier eingesetzt, um Struk- tur, Funktion und Dynamik retinal-tragender Membranproteine aus gamma-Proteobakterien aus dem Plankton der Ozeane aufzuklären. Genauere Untersuchungen sollen Aufschluss darüber geben, wie diese Art der Photosynthese funktioniert. Bislang ging man von der Annahme aus, dass die meiste Energie vor allem auf Basis von Chlorophyll erzeugt wird.

Mit der Bewilligung dieses Gerätes folgt die DFG auch dem Konzept eines interuniversitären NMR-Zentrums, denn Gruppen aus Regensburg, Jena und Berlin werden zusätzlich Messzeit in Frankfurt erhalten, um an RNA-Protein-Komplexen, Membranproteinen sowie an siliziumhaltigen Zellwänden zu forschen. In Frankfurt werden nicht nur die Forschungsgruppen des BMRZ - Prof. Harald Schwalbe, Prionenproteine, RNA-Protein-Interaktionen, Prof. Volker Dötsch; große Proteinkomplexe, sondern auch die Projekte der SFBs Molekulare Bioenergetik (478), Functional Membrane Proteomics (628), RNA-Ligand Interactions (579) sowie des CMP profitieren. Die Bedeutung des BMRZ wird auch durch seine Funktion als Euroean Large Scale Facility unterstrichen.

Die Beschaffung dieses Hochleistungsspektrometers folgt einer gemeinsamen Initiative mit dem Göttinger MPI für Biophysikalische Chemie zur Verbesserung der verfügbaren Messempfindlichkeit der Festkörper NMR und deren Anwendung auf Membranproteine und aggregierte Proteinzustände.

Kontakt: Prof. Clemens Glaubitz; Institute for Biophysical Chemistry
Centre for Biomolecular Magnetic Resonance; Marie Curie Str. 9; 60439 Frankfurt; Tel.: 069-798-29927; Fax.: 069-798-29929; E-Mail: glaubitz@em.uni-frankfurt.de

Dr. Ralf Breyer | idw
Weitere Informationen:
http://www.biophyschem.uni-frankfurt.de

Weitere Berichte zu: Feldstärke Festkörper Membranprotein NMR NMR-Spektroskopie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Frage der Dynamik
19.02.2018 | Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)

nachricht Forscherteam deckt die entscheidende Rolle des Enzyms PP5 bei Herzinsuffizienz auf
19.02.2018 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics