Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie bildet sich Sauerstoff in der Erdatmosphäre?

11.11.2005


Physiker beschreiben neues Experiment zum Mechanismus der Sauerstoffbildung in "Science"



Der Sauerstoff der Erdatmosphäre wird von Pflanzen und Algen gebildet. Der Forschungsgruppe von Prof. Dr. Holger Dau und Dr. Michael Haumann an der Freien Universität Berlin gelang es, die Sauerstoffbildung mit einer Zeitauflösung von nur zehn Millionstel Sekunden auf atomarer Ebene zu verfolgen und überraschende Einsichten in den bislang unbekannten Mechanismus der Sauerstoffbildung zu erhalten. Die Ergebnisse des neuen Experiments, das noch vor kurzer Zeit als undurchführbar galt, präsentieren die Physiker am 11. November in "Science".



Angetrieben durch Solarenergie bauen Pflanzen, Algen und Blaualgen (Cyanobakterien) aus Kohlenstoffdioxid (CO2) und Wasser einfache Kohlehydrate auf. Dieser Vorgang wird als Photosynthese bezeichnet und stellt den ersten Schritt in der Nahrungskette dar, von der letztendlich alle Lebewesen abhängen. Hierzu müssen dem Wasser zwei Elementarteilchen, nämlich Protonen und Elektronen, entnommen werden und es wird Sauerstoff (O2) freigesetzt. Aus Sicht der photosynthetischen Organismen ist der Sauerstoff ein reines Neben- oder Abfallprodukt. Dieses Abfallprodukt der photosynthetischer Wasserspaltung hat jedoch zu dem Übergang von der kohlenstoffdioxidreichen Atmosphäre, wie sie vor drei Milliarden Jahren auf der Erde vorherrschte, zu der heutigen kohlenstoffdioxidarmen und sauerstoffreichen Luft geführt, die Tieren und Menschen das Atmen ermöglicht.

Seit langem versuchen Wissenschaftler zu verstehen, wie es Pflanzen möglich ist, aus zwei Wassermolekülen vier Protonen und vier Elektronen zu entnehmen und den molekularen Sauerstoff zu bilden. Angetrieben wird dieser Prozess durch die Absorption von vier Lichtteilchen (Photonen), die in der Natur dem Sonnenlicht entstammen und in dem Experiment der Gruppe um Dau und Haumann in Form kurzer Laserpulse zugeführt wurden. Der Ort der Wasserspaltung ist das Sauerstoff bildende Photosystem, ein Komplex aus Proteinen und Pigmenten sowie einer handvoll von Metallatomen. Interessanterweise spielen im Photosystem - wie auch in vielen anderen Enzymen - die an das Biomolekül gebundenen Metallatome eine besonders wichtige Rolle. Ähnlich wie z.B. im Katalysator zur Umsetzung von Autoabgasen werden in zahlreichen Enzymen die besonderen chemischen Eigenschaften von Metallen genutzt. Bei der photosynthetischen Wasserspaltung sind es vier Manganatome.

In allen photosynthetischen Organismen ist das Sauerstoff bildende Photosystem im Wesentlichen gleich aufgebaut. Die Absorption von Lichtteilchen (Photonen) durch das Blattgrün (Chlorophyllmoleküle) löst Elektronenbewegungen zwischen Atomgruppen aus. Nach der Absorption von vier Photonen wird schließlich an einem Komplex aus den vier Manganatomen und Proteinen des Photosystems der molekulare Sauerstoff gebildet. Eine Mikrosekunde (µs) ist der millionste Teil einer Sekunde. Die Veränderungen in dem Mangankomplex der Photosynthese, die nun unmittelbar verfolgt werden konnten, finden in dem Zeitbereich von 10 bis 5000 µs nach Absorption eine Lichteilchens auf. Unter anderen werden Elektronen aus den Manganatomen entfernt und die Distanzen zwischen Mangan und seinem Nachbaratomen verringert sich um etwa zehn Pikometer, wobei ein Pikometer der Millionste Teile eines Millionstel Meters ist. Derartige Prozesse können mit Röntgenstrahlung beobachtet werden, wie sie an modernen Synchrotrons zur Verfügung steht.

In einem Synchrotron bewegen sich Elektronen oder Positronen mit hoher Geschwindigkeit durch einen Ring von mehreren hundert Metern Durchmesser, wobei intensive Röntgenstrahlung emittiert wird. Ursprünglich von Physikern zur Entdeckung von Elementarteilchen ersonnen, sind heute Synchrotrone ein unersetzliches Werkzeug in der Erforschung biologischer Strukturen und Prozesse. Nach mehrjährigen Vorversuchen am Deutschen Elektronen Synchrotron (DESY) in Hamburg und am Berliner Elektronen Synchrotron (BESSY) führte die Forschungsgruppe die Schlüsselexperimente an einem der weltweit leistungsfähigsten Synchrotronstrahlungszentren durch, dem ESRF (European Synchrotron Radiation Facility) in Grenoble in den französischen Alpen. Hierzu wurden in monatelanger Arbeit aus Spinatblättern mehrere Tausend Photosystemproben präpariert und charakterisiert, bevor dann in Tag- und Nachtschichten ein Team von vier Wissenschaftlern eine Woche lang die Röntgenexperimente in Grenoble durchführen konnte.

Am europäischen Synchrotron in Grenoble wurde von den Berliner Wissenschaftlern die Sauerstoffbildung der Photosysteme mit einer Folge von Laserpulsen angetrieben. Gleichzeitig wurde die Absorption der Röntgenstrahlung durch die Manganatom des Photosystems detektiert. So konnte die Geschwindigkeiten der einzelnen Schritte im Funktionszyklus präzise ermittelt werden. Überraschenderweise wurde ein neuer Zwischenzustand gefunden, bei dem nicht wie erwartet ein Elektron, sondern ein Proton dem Mangankomplex entzogen wird. Dieses Ergebnis führt zu einem neuen Bild der Sauerstoffbildung. Im klassischen Modell führt die Absorption von vier Lichteilchen zur Ansammlung von vier positiven Ladungen. Protonen spielen in diesem Bild keine zentrale Rolle. Zusammen mit zuvor erzielten Ergebnissen der Forschergruppe zeigen die Resultate der zeitaufgelösten Röntgenmessungen, dass dem Mangankomplex nicht nur Elektronen sondern auch Protonen gezielt entzogen werden. Wohl organisierte Protonenbewegungen ermöglichen also die Sauerstoffbildung.

Das Rätsel der photosynthetischen Wasserspaltung ist noch nicht abschließend gelöst. Aber schon wird von Wissenschaftlern über mögliche Technologien nachgedacht, die sich die Prinzipien der Natur zu Nutze machen. Die Arbeitsgruppe um Holger Dau und Michael Haumann beteiligt sich an einer gemeinsamen Initiative neun deutscher Forschungsteams zum Thema "Grundlagen für einen biotechnologischen und biomimetischen Ansatz der Wasserstoffproduktion". Das Bundesministerium für Bildung und Forschung wird die geplanten Arbeiten drei Jahre lang mit insgesamt rund zwei Millionen Euro fördern.

Ziel ist die Bildung von Wasserstoff unter Nutzung von Solarenergie. Angetrieben durch Licht können Mikroorganismen nämlich nicht nur dem Wasser Elektronen and Protonen entnehmen. In Enzymen, die als Hydrogenasen bezeichnet werden, können aus den im Photosystem gebildeten Elektronen und Protonen auch Wasserstoffmoleküle (H2) geformt werden. Wasserstoff wird in nicht all zu ferner Zukunft Benzin und Diesel als Treibstoff in Kraftfahrzeugen ersetzen. Die Gewinnung von "Bio-Wasserstoff" stellt somit eine faszinierende Möglichkeit der Umwelt schonenden Wasserstoffproduktion dar. Die zu bewältigenden wissenschaftlichen und technischen Herausforderungen sind riesig und die Entwicklung eines technischen Systems könnte Jahrzehnte erfordern. Die Enträtselung der Wasserspaltung im Photosystem sowie der Wasserstoffbildung an den Metallzentren der Hydrogenasen könnte ein wichtiger erster Schritt sein.

Organisatorische Rahmen der beschriebenen Arbeiten:

Im Sonderforschungsbereich 498 wird die Zusammenarbeit von 20 Berliner Arbeitsgruppen zum Thema der Kofaktoren von Proteinen (etwa Protein gebundene Metallatome) von der Deutschen Forschungsgemeinschaft finanziell unterstützt. Die beschriebenen Arbeiten zur Aufklärung der Wasserspaltung wurden im Rahmen dieses Sonderforschungsbereichs durchgeführt, in dem neben der photosynthetischen Wasserspaltung auch die Funktion von Hydrogenasen ein Forschungsschwerpunkt ist.

Literatur:
M. Haumann, P. Liebisch, C. Müller, M. Barra, M. Grabolle and H. Dau, "Photosynthetic O2 Formation Tracked by Time-Resolved X-ray Experiments", in: Science 2005, Ausgabe vom 11. November 2005

Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Holger Dau, Institut für Experimentalphysik der Freien Universität Berlin, Tel.: 030 / 838-53581 oder 838-56141, E-Mail: holger.dau@physik.fu-berlin.de

Ilka Seer | idw
Weitere Informationen:
http://www.fu-berlin.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscherteam der Universität Bremen untersucht Korallenbleiche
24.04.2017 | Universität Bremen

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1. Essener Gefahrguttage am 19.-20. September 2017 mit fachbegleitender Ausstellung

24.04.2017 | Seminare Workshops

Laserstrukturierung verbessert Haftung auf Metall und schont die Umwelt

24.04.2017 | Maschinenbau

Forscherteam der Universität Bremen untersucht Korallenbleiche

24.04.2017 | Biowissenschaften Chemie