Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stickoxid in Biologie und Medizin

27.09.2001


Stickoxid ist auch ein wichtiges Signalmolekül, das von den verschiedensten Zelltypen als Kommunikationsmittel eingesetzt wird, zum Beispiel von Nervenzellen. Jedes Jahr erscheinen zur Stickoxidforschung weltweit etwa 6.000 wissenschaftliche Publikationen, wobei nahezu alle Fachgebiete in der Biologie und Medizin betroffen sind. 1998 wurde den Pionieren dieser Forschungsrichtung der Nobelpreis verliehen.

"Noch bis Ende der 80er Jahre kannten selbst Wissenschaftler Stickoxid gerade mal als Verbrennungsprodukt von Luft, in Abgasen enthalten, die unsere Wälder schädigen, vielleicht sogar uns selbst", berichtet der Gastgeber der Tagung, Professor Gerald Wolf, der an der Magdeburger Uni das Institut für Medizinische Neurobiologie leitet. "Die Überraschung war komplett, als sich herausstellte, dass dieses Molekül, chemisch gesehen ein Radikal, in Zellen unseres Organismus produziert wird. Stickoxid ist nicht etwa ein Zufallsprodukt. Vielmehr bilden die Zellen mit Hilfe bestimmter Enzyme, den Stickoxidsynthasen, dieses Radikal nach Art eines biologischen Programms."

In seinen Untersuchungen verfolgt Prof. Wolf gemeinsam mit seinen Mitarbeitern die Tätigkeitsspur von Stickoxid im Gehirn. "Wir wissen bereits sehr genau, dass Stickoxid ein bedeutendes Glied in einer ganzen Reihe von Faktoren darstellt, die zu Hirngewebsuntergängen führt. Das ist zum Beispiel beim Schlaganfall so, aber auch bei den so genannten primär degenerativen Erkrankungen, wie der Parkinson-Krankheit und sicherlich auch bei der Alzheimer-Krankheit, bekanntlich die häufigste Ursache für den Altersschwachsinn."

Das besondere Problem sei, so der Neurobiologe, dass für das Stickoxid sowohl krankheitsbegünstigende Wirkungen nachgewiesen werden können, als auch - oft zur gleichen Zeit, aber an einem anderen Wirkort - ein Schutzeffekt. Stickoxid und seine Folgeprodukte vermögen mit nahezu allen biologisch bedeutenden Molekülen zu reagieren.

Dazu der Neurobiologe Gerald Wolf: "Entsprechend unübersichtlich, ja widersprüchlich ist das Wirkungsspektrum. So erklärt sich auch, dass nicht einfach eine Pille zu erwarten ist, mit der durch Stickoxid verursachte Störungen und Krankheiten ’ganz einfach’ zu beheben sind."
Eine wichtige Rolle wird auf der Tagung auch die Frage spielen, unter welchen Umständen die Stickoxid bildenden Enzyme von den Zellen erzeugt werden, wie die mit ihnen verbundenen Stoffwechselwege zu enträtseln sind und wie sich die Zellen gegen die Schadwirkung des von ihnen selbst gebildeten Stickoxids schützen können.

Den Festvortrag zur Eröffnung der Tagung wird Prof. Dr. Vincent aus Vancouver halten. Der kanadische Wissenschaftler gehört zu den "Männern der ersten Stunde" in der Stickoxid-Forschung. Heute beschäftigt er sich mit den durch Stickoxid ausgelösten Signalwegen innerhalb der Zelle. Die Eröffnungsveranstaltung findet im Jahrtausendturm im Elbauenpark statt. Tagungsort für das wissenschaftliche Programm ist der Zentrale Hörsaal (Haus 22) auf dem Campus des Universitätsklinikums Magdeburg, Leipziger Straße 44.

Weitere Auskünfte erteilt gern:
Prof. Dr. Gerald Wolf, Direktor des Institutes für Medizinische Neurobiologie der Otto-von-Guericke-Universität Magdeburg,
Tel. 0391/67 14276,
E-Mail: gerald.wolf@medizin.uni-magdeburg.de

Kornelia Suske | idw
Weitere Informationen:
http://www.med.uni-magdeburg.de/fme/institute/imnb/.

Weitere Berichte zu: Enzym Neurobiologie Radikal Stickoxid

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics