Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Zellen

10.11.2005


Poröse Kapseln aus Molybdänoxid können als Modell für biologische Ionentransportprozesse dienen.



Müssen Zellen immer aus organischen Kohlenstoffverbindungen aufgebaut sein? Wenn findige Wissenschaftler ihre Phantasie bemühen, finden sie rasch eine Antwort auf diese Frage. Das zeigen Arbeiten von Achim Müller aus Bielefeld und seinen Mitarbeitern. Sie konstruierten eine "künstliche Zelle" aus einem anorganischen Riesenmolekül: einem kugelförmigen Polyoxymolybdatcluster. 20 ringförmige Öffnungen, die von einer alternierenden Folge von je neun Molybdän- und neun Sauerstoffatomen umschlossen wurden, bildeten die Poren der künstlichen Zellmembran. An der Innenseite waren zweifach negativ geladene Sulfatgruppen kovalent gebunden, die für eine deutliche negative Ladung der Kapseloberfläche sorgten. Im Innern der Kugel befanden sich Wassermoleküle. Jede Pore war durch einen "Stöpsel" aus einem Harnstoffmolekül verschlossen, der über schwache, nicht kovalente Wechselwirkungen an den Mo9O9-Ring angelagert war.

... mehr zu:
»Ca2+-Ionen »Kapsel »Poren »Zelle »Zellmembran


Typisch für biologische Signalprozesse in lebenden Zellen, ist ein kontrollierter Ionenfluss durch spezielle Kanalproteine in der Zellmembran. Diese können durch die Bindung eines geeigneten Liganden gesteuert werden oder über das elektrochemische Potential an der Zellmembran, letztendlich also durch Konzentrationsunterschiede von Ionen innerhalb und außerhalb der Zelle. Bei einer Vielzahl von biologischen Funktionen spielen Calciumionen (Ca2+) eine wichtige Rolle. Aus diesem Grunde wählten Müller et al. Ca 2+ für ihre weiteren Experimente aus. Sie versetzten wässrige Lösungen der Molybdatkapseln mit Ca2+-Ionen und untersuchten die entstehenden Kristalle mithilfe der Röntgenstrukturanalyse. Dabei stellte sich heraus, dass nicht einfach Calciumionen in die Kapsel eingewandert waren, auch die Harnstoffstöpsel befanden sich wieder auf ihren Plätzen in den Mo9O9 -Poren.

Dieses Verhalten der künstlichen Zelle zeigt Parallelen zu den Vorgängen, die sich an einem spannungsgesteuerten Ionenkanal in einer lebenden Zelle abspielen: Im Ausgangszustand sind die Poren geschlossen. Werden nun Ca2+-Ionen im Überschuss zugegeben, so gleichen die positiven Ca2+-Ionen die negativen Ladungen der Kugeloberfläche aus. Dadurch ändert sich der elektrochemische Gradient an der künstlichen Zellmembran. Die Deckel der Poren öffnen sich und Ca 2+-Ionen können in die Kapsel eindringen. Möglicherweise verändert dies erneut die Ladungsverteilung an der künstlichen Zellmembran und die Poren schließen sich wieder.

Autor: Achim Müller, Universität Bielefeld (Germany), http://www.uni-bielefeld.de/chemie/ac1/index.htm

Angewandte Chemie: Presseinfo 45/2005

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.gdch.de
http://www.uni-bielefeld.de/chemie/ac1/index.htm
http://presse.angewandte.de

Weitere Berichte zu: Ca2+-Ionen Kapsel Poren Zelle Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen