Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

GeneBloc technology

26.09.2001


atugen is following two key approaches to discover and validate new targets, ribozymes and its GeneBloc technology. With regard to ribozymes, Atugen is developing conditional and tissue-specific ribozyme-based gene-knockdown services, in which vectors encoding a ribozyme are used to create transgenic animals that express the ribozyme in a conditional or tissue-specific manner. (Since ribozymes have the chemistry of natural RNA, they can be encoded in a vector and expressed in a transgenic animal.)

For the GeneBloc technology, Atugen researchers start with a partial (e.g., an EST) or full-length cDNA sequence for a gene of interest. Atugen analyzes the function and relevance of that gene to disease processes by using the proprietary GeneBloc technology. GeneBlocs are small synthetic DNA/RNA hybrid molecules that bind to a target mRNA with high affinity and specificity, and induce its destruction by RNase H (an enzyme that selectively degrades the RNA strand of DNA/RNA hybrids). GeneBlocs are constructed with a minimum content of antisense DNA to provide stability and low toxicity. Other modifications are made at the terminal ends of the GeneBloc molecules provide further stability (figure 1). As a result, GeneBlocs remain active over several days.

atugen has developed numerous lipid formulations to deliver GeneBlocs into mammalian cells. The company says that it typically achieves more than 95% transfection efficiency for most cell lines, and that it also achieves sustained delivery of GeneBlocs over several days in cell culture.

Using these tools, atugen can help pharmaceutical and biotechnology companies at several steps in the drug discovery pipeline: GeneBlocs can be applied for target discovery, target validation, small molecule lead optimization, and pre-clinical testing. As explained by Klaus Giese, the company’s vice president of research: "The GeneBloc technology is used internally to identify and functional validate genes involved in the progression of human prostate and breast cancer cells to the metastatic state. We have already identified several crucial candidates that when knocked-down in an animal model prevents metastasis".

There are other applications of the technology. GeneBlocs can be designed to knock down an entire gene family, or they can be targeted at specific family members only (figure 2). They can also be designed to target specific splice variants; such an approach is possible because these reagents can destroy target mRNAs by binding to any region of the target molecule. Thus, for example, one can design GeneBlocs that bind to nucleic acid sequences that are conserved within a gene family, or that bind to sequences that are unique to a single family member. In addition, GeneBlocs can be used to optimize small molecule leads. In this program, atugen compares the gene expression patterns induced after GeneBloc or small molecule treatment directed against the same target. "Using this technology, we have identified genes that are exclusively regulated by an important cellular enzyme phosphatidyl-inositol 3-kinase" says Klaus Giese.

Zisi Fotev | atugen AG
Weitere Informationen:
http://www.atugen.com

Weitere Berichte zu: GeneBloc RNA

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie