Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Hormone das Wachstum von Pflanzen steuern

27.09.2001


Tübinger Entwicklungsgenetiker veröffentlichen Forschungsergebnisse in der Zeitschrift Nature

Wie bei Mensch und Tier wird auch bei Pflanzen das Wachstum über Hormone gesteuert. Damit sich Pflanzenzellen an bestimmten Stellen teilen oder strecken und die Pflanze wächst, muss das Wachstumshormon Auxin am richtigen Ort vorhanden sein. Auxin steuert zum Beispiel die Ausformung der Gestalt der Pflanze, indem die Gipfelknospe eines Zweiges das Austreiben der darunter liegenden Seitenknospen hemmt. Das Hormon sorgt auch dafür, dass Pflanzen sich beim Wachsen in Richtung einer Lichtquelle krümmen oder ihre Wurzeln in Richtung der Schwerkraft wachsen. Außerdem ist Auxin an der Ausbildung von wasser- und nährstoffleitenden Geweben beteiligt. Viele der Wirkungen des Auxins haben Wissenschaftler durch spezielle Hemmstoffe untersucht. Diese so genannten Auxin-Transport-Inhibitoren unterbrechen den Transport des Auxins auf seinem Weg zum Ort des Wachstums. Tübinger Biologen um Prof. Gerd Jürgens vom Zentrum für Molekularbiologie der Pflanzen der Universität Tübingen haben nun zusammen mit Kollegen vom Kölner Max-Delbrück-Laboratorium den Wirkungsmechanismus der Auxin-Transport-Inhibitoren aufgeklärt. Ihre Forschungsergebnisse werden in der heutigen Ausgabe der Fachzeitschrift Nature (Band 413, Heft 6854) veröffentlicht.

Wenn Auxin zur wachsenden Wurzelspitze transportiert wird, muss es durch die Zellen hindurch geschleust werden. Dazu gibt es spezielle Rezeptoren in der Zellmembran, der äußeren Hülle der Zelle. Der gerichtete Transport des Auxins kommt dadurch zu Stande, dass die Rezeptoren sich polar an einer Seite der Zelle sammeln. Bisher war bereits bekannt, dass Auxin-Transport-Inhibitoren nicht einfach das Auxin abfangen. Die Pflanzenphysiologen haben nun herausgefunden, dass die Hemmstoffe nicht die polare Ansammlung der Rezeptoren an einer Seite der Zelle stören. Vielmehr greifen sie beim Transport der Rezeptoren in der Zelle ein. Die Auxin-Rezeptoren wechseln dauernd zwischen internen Abteilen in der Zelle und der äußeren Zellmembran. Transportiert werden sie entlang dem so genannten Zellskelett, das man sich wie gespannte Fäden vorstellen kann, an denen die Rezeptoren entlangwandern. Werden Auxin-Transport-Inhibitoren hinzugegeben, wird der Fluss der Rezeptoren in der Zelle unterbunden.

Für die Forscher überraschend war die Feststellung, dass die Auxin-Transport-Inhibitoren auch den Transport von Membraneiweißen hemmten, die mit dem Auxinfluss nichts zu tun haben. Es liegt daher nahe, dass die Auxin-Transport-Inhibitoren nicht, wie angenommen, speziell das Auxin hemmen. Doch scheint das Transportsystem der Auxin-Rezeptoren in der Zelle besonders empfindlich und bei der Regulierung des Auxinflusses von großer Wichtigkeit zu sein. Zusammenfassend lässt sich sagen, dass ein ständiger Fluss der Auxin-Rezeptoren in der Zelle für den gerichteten Auxin-Transport notwendig ist.

Die Arbeitsgruppe von Prof. Gerd Jürgens zielt mit ihren Forschungen an der Modellpflanze der Genetiker, der Ackerschmalwand (Arabidopsis thaliana), darauf ab, grundsätzliche Mechanismen in der Entwicklung von Pflanzen aufzuklären.


Nähere Informationen:

Prof. Gerd Jürgens, Tel. 0 70 71/2 97 88 87
Niko Geldner, Tel. 0 70 71/2 97 74 66
ZMBP, Zentrum für Molekularbiologie der Pflanzen
Entwicklungsgenetik
Auf der Morgenstelle 3
72076 Tübingen

Michael Seifert | idw

Weitere Berichte zu: Auxin Auxin-Transport-Inhibitoren Hormon Rezeptor Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik