Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Möglicher Krebsregulator entdeckt

07.11.2005


Marburger Molekularbiologen haben ein Enzym erforscht, das eine wichtige Rolle bei vielen Krebsarten spielt - HectH9 bietet Ansatzpunkte für pharmakologische Substanzen - Veröffentlichung in Cell



Lebenswichtig für den Organismus, gleichzeitig aber auch eine der Ursachen für Krebs ist das derzeit weltweit intensiv erforschte MYC-Gen. Dieses Onkogen spielt eine wichtige Rolle für das Wachstum von Organismen durch Zellteilung. Weil es in vielen Tumoren erhöhte Aktivität aufweist und dort zur unkontrollierten Teilung erkrankter Zellen beiträgt, ist der Myc-Signalweg ein möglicher Ansatzpunkt für Molekularbiologen und Biochemiker, um die Entstehung von Krebs zu verhindern.

... mehr zu:
»Adhikary »Enzym »HectH9 »Myc »Myc-Protein »Protein


Eine internationale Arbeitsgruppe um Professor Dr. Martin Eilers, stellvertretender Leiter des Instituts für Molekularbiologie und Tumorforschung (IMT) an der Philipps-Universität Marburg, hat nun einen Weg gefunden, wie sich die Auswirkungen dieses Gens möglicherweise begrenzen lassen. Kooperationspartner des Marburger IMT waren Gruppen um Professor Dr. Kristian Helin vom European Institute of Oncology in Mailand (Helin ist auch Direktor des Biotech Research and Innovation Centre in Kopenhagen) sowie Professor Dr. Martin Scheffner von der Universität Konstanz. Ihre Ergebnisse erschienen am 4. November unter dem Titel "The ubiquitin ligase HectH9 regulates transciptional activation by Myc and is essential for tumor cell proliferation" im renommierten US-amerikanischen Fachjournal Cell (Cell, Vol 123, 409-421, 4 November 2005).

Aus dem MYC-Gen wird zunächst ein Protein namens Myc erzeugt, das auch als Transkriptionsfaktor bezeichnet wird. Dieser Transkriptionsfaktor aktiviert zahlreiche Zielgene, die zu verstärktem Zellwachstum beziehungsweise Zelltod beitragen. Diese Aktivierung lässt sich bislang nicht verhindern: Proteine wie Myc bieten keine Angriffspunkte für pharmakologische Substanzen, da sie keine eigene enzymatische Aktivität besitzen, die gehemmt werden könnte.

Den Wissenschaftlern gelang es aber, eine wichtige Funktion eines Interaktionspartners von Myc, nämlich des Enzyms HectH9, aufzuklären. HectH9 verstärkt unter anderem die aktivierenden Eigenschaften von Myc. Die Tätigkeit von Enzymen wiederum lässt sich durch Medikamente in vielen Fällen relativ einfach beeinflussen. "Wir hoffen nun", so Sovana Adhikary, gemeinsam mit ihrem Marburger Kollegen Andreas Hock und zwei weiteren Teammitgliedern Erstautorin der Publikation, "dass wir eine Substanz finden, der es gelingt, HectH9 zu blockieren." Dann besteht die Chance, dass sich das Myc-Protein zeitweise "ausschalten" lässt, um dem Körper die Möglichkeit zu geben, sich gegen den Krebs zu wehren.

"Eigentlich haben wir über die Stabilität des Myc-Proteins gearbeitet", so Adhikary. Es "lebt" durchschnittlich 45 Minuten und wird vom Körper abgebaut, sobald bestimmte Substanzen eine so genannte Polyubiquitinkette auf der Myc-Oberfläche aufbauen. "Diese Kette aus miteinander verknüpften Ubiquitinen ist wie ein Markierungsfähnchen", erklärt Hock, "das dem Proteasom, dem ’Zellmülleimer’, üblicherweise ein Signal gibt, das Protein abzubauen." Dann aber stellten die Wissenschaftler fest, dass das Myc-Protein auch dann noch vom Körper abgebaut wurde, wenn sie durch eine Mutation des Proteins das Andocken des Markierungssignals verhinderten.

Die Polyubiquitinkette musste also noch eine andere Funktion haben, schlossen sie und erkannten im weiteren Verlauf ihrer Arbeit, dass sie die transkriptionelle Aktivität des Myc-Proteins verstärkte. Die Polyubiquitinkette erhöhte also die Wirkung von Myc auf Zielgene, die daraufhin die Zelle verstärkt zur Teilung anregte. Verstärkte Zellteilung wiederum kann zu unkontrollierter Wucherung von Gewebe, insbesondere auch Krebsgewebe führen.

MYC gehört neben dem Onkogen RAS zu den wichtigsten menschlichen Genen, die an der Krebsentstehung beteiligt sind. Seine Anwesenheit alleine führt allerdings nicht zu Krebs, schließlich spielt es in vielen wichtigen Zellteilungs- und Wachstumsprozessen des Körpers eine Rolle. "Es kommt auf den genauen zellulären Kontext an, ob Myc Krebs erzeugt oder nicht", so Adhikary.

Derzeit lassen die Wissenschaftler Tausende von Substanzen überprüfen, um herauszufinden, welche davon das Enzym HectH9 und damit die Aktivität des Myc-Proteins hemmen. Dass dieser Weg Erfolg versprechend sein könnte, belegen Studien an genetisch veränderten Mäusen. Hock: "Bei ihnen wurde durch gezielte Mutationen das MYC-Gen abgeschaltet. In einigen Fällen wurde dadurch das Tumorwachstum gehemmt, in anderen ging der Tumor sogar vollständig zurück."

Kontakt
Professor Dr. Martin Eilers, Dipl.-Biol. Sovana Adhikary, Dipl.-Biol. Andreas Hock
Philipps-Universität Marburg, Institut für Molekularbiologie und Tumorforschung (IMT), Emil-Mannkopff-Straße 2, 35037 Marburg
E-Mail: eilers@imt.uni-marburg.de; adhikary@imt.uni-marburg.de; hock@imt.uni-marburg.de
Tel.: (06421) 28 66410

Thilo Körkel | idw
Weitere Informationen:
http://www.imt.uni-marburg.de

Weitere Berichte zu: Adhikary Enzym HectH9 Myc Myc-Protein Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE