Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Proteine ihre dreidimensionale Struktur finden

13.10.2005


Die Struktur des Proteins CI2 besteht aus einer α-Helix und einem β-Faltblatt. CI2 ist ein so genanntes 2-Zustandsprotein, das vom ungefalteten in den gefalteten Zustand nur eine einzige Übergangsbarriere überwindet. Bild: MPI für Kolloid- und Grenzflächenforschung


Max-Planck-Wissenschaftler entdecken neuen Zugang zu den Mechanismen der Proteinfaltung


Die dreidimensionale Faltung von Proteinen gibt Forschern nach wie vor Rätsel auf. Die Untersuchung relativ kleiner Proteine könnte uns einer Lösung dieser Rätsel näher bringen. Viele kleine Proteine überqueren bei ihrer Faltung in die dreidimensionale Struktur nur eine einzige Barriere. Diese besteht aus einem Ensemble extrem kurzlebiger Übergangsstrukturen, die nicht direkt beobachtet werden können. Mutationen, die die Faltungsbarriere geringfügig verschieben, ermöglichen jedoch einen indirekten Einblick in die Übergangsvorgänge. Forscher vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung und der Universität von Kalifornien in San Francisco, USA, haben jetzt eine neue Methode entwickelt, mit der die Übergangsstrukturen aus Mutationsdaten rekonstruiert werden können [PNAS, 102(29), 10171-10175 (2005)].

Proteine sind Kettenmoleküle, die aus einzelnen Aminosäuren aufgebaut sind. Die genaue Sequenz der 20 verschiedenartigen Aminosäuren innerhalb der Proteinkette bestimmt dabei, in welche spezielle Struktur sich ein Protein faltet. Die dreidimensionale Struktur bestimmt wiederum die Funktion der Proteine, die vom Sauerstofftransport in unserem Blut über die Energieübertragung in unseren Muskeln bis hin zur Stärkung unseres Haares reicht. Während der Evolution wurden die Proteinsequenzen, die in unserer DNA verschlüsselt sind, auf diese Funktionen hin optimiert. Doch nur korrekt gefaltet kann ein Protein seine Funktion erfüllen. Fehler bei der Faltung können zu Proteinzuständen führen, die schwere Krankheiten wie Alzheimer, Parkinson oder das Creutzfeldt-Jakob-Syndrom hervorrufen.


Um den Mechanismen der Proteinfaltung auf die Schliche zu kommen, haben sich Forscher lange Zeit auf metastabile Zwischenzustände der Faltung konzentriert. Man nahm an, dass diese Zwischenzustände wichtige Wegmarken der endgültigen Faltung in die dreidimensionale Struktur darstellen. Überraschenderweise wurde jedoch vor etwa einem Jahrzehnt entdeckt, dass der Faltungsweg einiger kleiner Proteine keinerlei metastabile Zwischenzustände aufweist. Dieser erstaunlich direkte Übergang vom ungefalteten in den gefalteten Zustand wird als "Zwei-Zustandsfaltung" bezeichnet. In den vergangenen Jahren stellte sich nun heraus, dass die meisten kleinen Proteine so genannte "Zwei-Zustandsfalter" sind, was zu einem Paradigmenwechsel in der Erforschung der Proteinfaltung führte.

Entscheidend bei einer "Zwei-Zustandsfaltung" ist die Überquerung der Barriere zwischen dem ungefalteten und dem gefalteten Zustand. Diese Faltungsbarriere besteht aus einer großen Anzahl von extrem kurzlebigen Übergangsstrukturen. Jede dieser Strukturen ist teilweise gefaltet und wird mit gleicher Wahrscheinlichkeit entweder den Faltungsprozess vervollständigen oder sich wieder entfalten. In dieser Hinsicht verhalten sich die Übergangsstrukturen ähnlich einer Kugel auf einem Sattelpunkt. Die Wahrscheinlichkeit, dass die Kugel auf die eine oder die andere Seite des Sattels rollt, liegt hier jeweils bei 50 Prozent.

Da die Übergangsstrukturen sehr instabil sind, lassen sie sich nicht direkt beobachten. Um die Zwei-Zustandsfaltung dennoch erforschen zu können, erzeugt man Mutanten eines Proteins. Diese Mutanten unterscheiden sich vom ursprünglichen Protein, dem "Wildtyp", in einer einzelnen Aminosäure. Die überwiegende Mehrzahl dieser Mutanten falten in dieselbe dreidimensionale Struktur wie der Wildtyp. Doch die Mutationen verändern geringfügig die Faltungsbarriere und damit auch die Faltungszeit, d.h. die Zeit, die ein ungefaltetes Protein zur Überquerung der Barriere benötigt.

Zentrale Frage ist deshalb: Lässt sich der Übergangszustand aus den gemessenen Veränderungen der Faltungszeiten rekonstruieren? Diese Rekonstruktion erfordert natürlich eine große Anzahl an Mutanten. Üblicherweise werden bei der Rekonstruktion die Mutationen einzeln betrachtet. Ändert eine Mutation die Faltungszeit nicht, so geht man davon aus, dass die mutierte Aminosäure im Übergangszustand noch unstrukturiert ist. Verändert hingegen eine Mutation die Faltungszeit, so spricht man davon, dass die mutierte Aminosäure im Übergangszustand bereits teilweise oder vollständig strukturiert sei.

Diese herkömmliche Rekonstruktionsmethode führt jedoch häufig zu Widersprüchen. Beispielsweise haben 20 verschiedene Mutationen in der α-Helix des Proteins Chymotrypsin Inhibitor 2 (CI2) ganz verschiedene Auswirkungen auf die Faltungszeit. Naiv betrachtet würde das dann bedeuten, dass einige Aminosäuren der Helix im Übergangszustand strukturiert sind, während benachbarte Aminosäuren noch unstrukturiert sind. Das ist jedoch nicht konsistent, da die Stabilisierung einer Helix kooperativ erfolgt und mehrere Windungen erfordert, in denen die Aminosäuren eine helikale Struktur annehmen.

Eine völlig neue Rekonstruktionsmethode von Übergangszuständen hat nun ein Forscherteam des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung und der Universität von Kalifornien in San Francisco in einem in der Fachzeitschrift PNAS erschienenen Artikel vorgeschlagen. Anstatt die Mutationen einzeln auszuwerten, werden bei dieser Methode sämtliche Mutationen innerhalb einer kooperativen Substruktur, beispielsweise einer Helix, gemeinsam betrachtet. Im Falle der α-Helix des Proteins CI2 führt das zu einem konsistenten strukturellen Bild, in dem die Helix im Übergangszustand vollständig ausgebildet, jedoch noch nicht an das β-Faltblatt angelagert ist.

Die Max-Planck-Wissenschaftler planen nun, komplette Übergangszustände aus Mutationsdaten zu rekonstruieren. Eine wichtige Voraussetzung dafür ist, die kooperativen Untereinheiten eines Proteins in atomistischen Modellen zu identifizieren. Letztlich können uns nur die Übergangszustände verraten, wie kleine Proteine ihren Weg in die dreidimensionale Struktur finden.

[KS/AT]

Originalveröffentlichung:

Claudia Merlo, Ken A. Dill, and Thomas R. Weikl
Φ values in protein folding kinetics have structural and energetic components

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Aminosäure Faltung Faltungszeit Mutanten Mutation Protein Übergangsstrukturen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie