Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Proteine ihre dreidimensionale Struktur finden

13.10.2005


Die Struktur des Proteins CI2 besteht aus einer α-Helix und einem β-Faltblatt. CI2 ist ein so genanntes 2-Zustandsprotein, das vom ungefalteten in den gefalteten Zustand nur eine einzige Übergangsbarriere überwindet. Bild: MPI für Kolloid- und Grenzflächenforschung


Max-Planck-Wissenschaftler entdecken neuen Zugang zu den Mechanismen der Proteinfaltung


Die dreidimensionale Faltung von Proteinen gibt Forschern nach wie vor Rätsel auf. Die Untersuchung relativ kleiner Proteine könnte uns einer Lösung dieser Rätsel näher bringen. Viele kleine Proteine überqueren bei ihrer Faltung in die dreidimensionale Struktur nur eine einzige Barriere. Diese besteht aus einem Ensemble extrem kurzlebiger Übergangsstrukturen, die nicht direkt beobachtet werden können. Mutationen, die die Faltungsbarriere geringfügig verschieben, ermöglichen jedoch einen indirekten Einblick in die Übergangsvorgänge. Forscher vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung und der Universität von Kalifornien in San Francisco, USA, haben jetzt eine neue Methode entwickelt, mit der die Übergangsstrukturen aus Mutationsdaten rekonstruiert werden können [PNAS, 102(29), 10171-10175 (2005)].

Proteine sind Kettenmoleküle, die aus einzelnen Aminosäuren aufgebaut sind. Die genaue Sequenz der 20 verschiedenartigen Aminosäuren innerhalb der Proteinkette bestimmt dabei, in welche spezielle Struktur sich ein Protein faltet. Die dreidimensionale Struktur bestimmt wiederum die Funktion der Proteine, die vom Sauerstofftransport in unserem Blut über die Energieübertragung in unseren Muskeln bis hin zur Stärkung unseres Haares reicht. Während der Evolution wurden die Proteinsequenzen, die in unserer DNA verschlüsselt sind, auf diese Funktionen hin optimiert. Doch nur korrekt gefaltet kann ein Protein seine Funktion erfüllen. Fehler bei der Faltung können zu Proteinzuständen führen, die schwere Krankheiten wie Alzheimer, Parkinson oder das Creutzfeldt-Jakob-Syndrom hervorrufen.


Um den Mechanismen der Proteinfaltung auf die Schliche zu kommen, haben sich Forscher lange Zeit auf metastabile Zwischenzustände der Faltung konzentriert. Man nahm an, dass diese Zwischenzustände wichtige Wegmarken der endgültigen Faltung in die dreidimensionale Struktur darstellen. Überraschenderweise wurde jedoch vor etwa einem Jahrzehnt entdeckt, dass der Faltungsweg einiger kleiner Proteine keinerlei metastabile Zwischenzustände aufweist. Dieser erstaunlich direkte Übergang vom ungefalteten in den gefalteten Zustand wird als "Zwei-Zustandsfaltung" bezeichnet. In den vergangenen Jahren stellte sich nun heraus, dass die meisten kleinen Proteine so genannte "Zwei-Zustandsfalter" sind, was zu einem Paradigmenwechsel in der Erforschung der Proteinfaltung führte.

Entscheidend bei einer "Zwei-Zustandsfaltung" ist die Überquerung der Barriere zwischen dem ungefalteten und dem gefalteten Zustand. Diese Faltungsbarriere besteht aus einer großen Anzahl von extrem kurzlebigen Übergangsstrukturen. Jede dieser Strukturen ist teilweise gefaltet und wird mit gleicher Wahrscheinlichkeit entweder den Faltungsprozess vervollständigen oder sich wieder entfalten. In dieser Hinsicht verhalten sich die Übergangsstrukturen ähnlich einer Kugel auf einem Sattelpunkt. Die Wahrscheinlichkeit, dass die Kugel auf die eine oder die andere Seite des Sattels rollt, liegt hier jeweils bei 50 Prozent.

Da die Übergangsstrukturen sehr instabil sind, lassen sie sich nicht direkt beobachten. Um die Zwei-Zustandsfaltung dennoch erforschen zu können, erzeugt man Mutanten eines Proteins. Diese Mutanten unterscheiden sich vom ursprünglichen Protein, dem "Wildtyp", in einer einzelnen Aminosäure. Die überwiegende Mehrzahl dieser Mutanten falten in dieselbe dreidimensionale Struktur wie der Wildtyp. Doch die Mutationen verändern geringfügig die Faltungsbarriere und damit auch die Faltungszeit, d.h. die Zeit, die ein ungefaltetes Protein zur Überquerung der Barriere benötigt.

Zentrale Frage ist deshalb: Lässt sich der Übergangszustand aus den gemessenen Veränderungen der Faltungszeiten rekonstruieren? Diese Rekonstruktion erfordert natürlich eine große Anzahl an Mutanten. Üblicherweise werden bei der Rekonstruktion die Mutationen einzeln betrachtet. Ändert eine Mutation die Faltungszeit nicht, so geht man davon aus, dass die mutierte Aminosäure im Übergangszustand noch unstrukturiert ist. Verändert hingegen eine Mutation die Faltungszeit, so spricht man davon, dass die mutierte Aminosäure im Übergangszustand bereits teilweise oder vollständig strukturiert sei.

Diese herkömmliche Rekonstruktionsmethode führt jedoch häufig zu Widersprüchen. Beispielsweise haben 20 verschiedene Mutationen in der α-Helix des Proteins Chymotrypsin Inhibitor 2 (CI2) ganz verschiedene Auswirkungen auf die Faltungszeit. Naiv betrachtet würde das dann bedeuten, dass einige Aminosäuren der Helix im Übergangszustand strukturiert sind, während benachbarte Aminosäuren noch unstrukturiert sind. Das ist jedoch nicht konsistent, da die Stabilisierung einer Helix kooperativ erfolgt und mehrere Windungen erfordert, in denen die Aminosäuren eine helikale Struktur annehmen.

Eine völlig neue Rekonstruktionsmethode von Übergangszuständen hat nun ein Forscherteam des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung und der Universität von Kalifornien in San Francisco in einem in der Fachzeitschrift PNAS erschienenen Artikel vorgeschlagen. Anstatt die Mutationen einzeln auszuwerten, werden bei dieser Methode sämtliche Mutationen innerhalb einer kooperativen Substruktur, beispielsweise einer Helix, gemeinsam betrachtet. Im Falle der α-Helix des Proteins CI2 führt das zu einem konsistenten strukturellen Bild, in dem die Helix im Übergangszustand vollständig ausgebildet, jedoch noch nicht an das β-Faltblatt angelagert ist.

Die Max-Planck-Wissenschaftler planen nun, komplette Übergangszustände aus Mutationsdaten zu rekonstruieren. Eine wichtige Voraussetzung dafür ist, die kooperativen Untereinheiten eines Proteins in atomistischen Modellen zu identifizieren. Letztlich können uns nur die Übergangszustände verraten, wie kleine Proteine ihren Weg in die dreidimensionale Struktur finden.

[KS/AT]

Originalveröffentlichung:

Claudia Merlo, Ken A. Dill, and Thomas R. Weikl
Φ values in protein folding kinetics have structural and energetic components

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Aminosäure Faltung Faltungszeit Mutanten Mutation Protein Übergangsstrukturen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie