Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Proteine ihre dreidimensionale Struktur finden

13.10.2005


Die Struktur des Proteins CI2 besteht aus einer α-Helix und einem β-Faltblatt. CI2 ist ein so genanntes 2-Zustandsprotein, das vom ungefalteten in den gefalteten Zustand nur eine einzige Übergangsbarriere überwindet. Bild: MPI für Kolloid- und Grenzflächenforschung


Max-Planck-Wissenschaftler entdecken neuen Zugang zu den Mechanismen der Proteinfaltung


Die dreidimensionale Faltung von Proteinen gibt Forschern nach wie vor Rätsel auf. Die Untersuchung relativ kleiner Proteine könnte uns einer Lösung dieser Rätsel näher bringen. Viele kleine Proteine überqueren bei ihrer Faltung in die dreidimensionale Struktur nur eine einzige Barriere. Diese besteht aus einem Ensemble extrem kurzlebiger Übergangsstrukturen, die nicht direkt beobachtet werden können. Mutationen, die die Faltungsbarriere geringfügig verschieben, ermöglichen jedoch einen indirekten Einblick in die Übergangsvorgänge. Forscher vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung und der Universität von Kalifornien in San Francisco, USA, haben jetzt eine neue Methode entwickelt, mit der die Übergangsstrukturen aus Mutationsdaten rekonstruiert werden können [PNAS, 102(29), 10171-10175 (2005)].

Proteine sind Kettenmoleküle, die aus einzelnen Aminosäuren aufgebaut sind. Die genaue Sequenz der 20 verschiedenartigen Aminosäuren innerhalb der Proteinkette bestimmt dabei, in welche spezielle Struktur sich ein Protein faltet. Die dreidimensionale Struktur bestimmt wiederum die Funktion der Proteine, die vom Sauerstofftransport in unserem Blut über die Energieübertragung in unseren Muskeln bis hin zur Stärkung unseres Haares reicht. Während der Evolution wurden die Proteinsequenzen, die in unserer DNA verschlüsselt sind, auf diese Funktionen hin optimiert. Doch nur korrekt gefaltet kann ein Protein seine Funktion erfüllen. Fehler bei der Faltung können zu Proteinzuständen führen, die schwere Krankheiten wie Alzheimer, Parkinson oder das Creutzfeldt-Jakob-Syndrom hervorrufen.


Um den Mechanismen der Proteinfaltung auf die Schliche zu kommen, haben sich Forscher lange Zeit auf metastabile Zwischenzustände der Faltung konzentriert. Man nahm an, dass diese Zwischenzustände wichtige Wegmarken der endgültigen Faltung in die dreidimensionale Struktur darstellen. Überraschenderweise wurde jedoch vor etwa einem Jahrzehnt entdeckt, dass der Faltungsweg einiger kleiner Proteine keinerlei metastabile Zwischenzustände aufweist. Dieser erstaunlich direkte Übergang vom ungefalteten in den gefalteten Zustand wird als "Zwei-Zustandsfaltung" bezeichnet. In den vergangenen Jahren stellte sich nun heraus, dass die meisten kleinen Proteine so genannte "Zwei-Zustandsfalter" sind, was zu einem Paradigmenwechsel in der Erforschung der Proteinfaltung führte.

Entscheidend bei einer "Zwei-Zustandsfaltung" ist die Überquerung der Barriere zwischen dem ungefalteten und dem gefalteten Zustand. Diese Faltungsbarriere besteht aus einer großen Anzahl von extrem kurzlebigen Übergangsstrukturen. Jede dieser Strukturen ist teilweise gefaltet und wird mit gleicher Wahrscheinlichkeit entweder den Faltungsprozess vervollständigen oder sich wieder entfalten. In dieser Hinsicht verhalten sich die Übergangsstrukturen ähnlich einer Kugel auf einem Sattelpunkt. Die Wahrscheinlichkeit, dass die Kugel auf die eine oder die andere Seite des Sattels rollt, liegt hier jeweils bei 50 Prozent.

Da die Übergangsstrukturen sehr instabil sind, lassen sie sich nicht direkt beobachten. Um die Zwei-Zustandsfaltung dennoch erforschen zu können, erzeugt man Mutanten eines Proteins. Diese Mutanten unterscheiden sich vom ursprünglichen Protein, dem "Wildtyp", in einer einzelnen Aminosäure. Die überwiegende Mehrzahl dieser Mutanten falten in dieselbe dreidimensionale Struktur wie der Wildtyp. Doch die Mutationen verändern geringfügig die Faltungsbarriere und damit auch die Faltungszeit, d.h. die Zeit, die ein ungefaltetes Protein zur Überquerung der Barriere benötigt.

Zentrale Frage ist deshalb: Lässt sich der Übergangszustand aus den gemessenen Veränderungen der Faltungszeiten rekonstruieren? Diese Rekonstruktion erfordert natürlich eine große Anzahl an Mutanten. Üblicherweise werden bei der Rekonstruktion die Mutationen einzeln betrachtet. Ändert eine Mutation die Faltungszeit nicht, so geht man davon aus, dass die mutierte Aminosäure im Übergangszustand noch unstrukturiert ist. Verändert hingegen eine Mutation die Faltungszeit, so spricht man davon, dass die mutierte Aminosäure im Übergangszustand bereits teilweise oder vollständig strukturiert sei.

Diese herkömmliche Rekonstruktionsmethode führt jedoch häufig zu Widersprüchen. Beispielsweise haben 20 verschiedene Mutationen in der α-Helix des Proteins Chymotrypsin Inhibitor 2 (CI2) ganz verschiedene Auswirkungen auf die Faltungszeit. Naiv betrachtet würde das dann bedeuten, dass einige Aminosäuren der Helix im Übergangszustand strukturiert sind, während benachbarte Aminosäuren noch unstrukturiert sind. Das ist jedoch nicht konsistent, da die Stabilisierung einer Helix kooperativ erfolgt und mehrere Windungen erfordert, in denen die Aminosäuren eine helikale Struktur annehmen.

Eine völlig neue Rekonstruktionsmethode von Übergangszuständen hat nun ein Forscherteam des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung und der Universität von Kalifornien in San Francisco in einem in der Fachzeitschrift PNAS erschienenen Artikel vorgeschlagen. Anstatt die Mutationen einzeln auszuwerten, werden bei dieser Methode sämtliche Mutationen innerhalb einer kooperativen Substruktur, beispielsweise einer Helix, gemeinsam betrachtet. Im Falle der α-Helix des Proteins CI2 führt das zu einem konsistenten strukturellen Bild, in dem die Helix im Übergangszustand vollständig ausgebildet, jedoch noch nicht an das β-Faltblatt angelagert ist.

Die Max-Planck-Wissenschaftler planen nun, komplette Übergangszustände aus Mutationsdaten zu rekonstruieren. Eine wichtige Voraussetzung dafür ist, die kooperativen Untereinheiten eines Proteins in atomistischen Modellen zu identifizieren. Letztlich können uns nur die Übergangszustände verraten, wie kleine Proteine ihren Weg in die dreidimensionale Struktur finden.

[KS/AT]

Originalveröffentlichung:

Claudia Merlo, Ken A. Dill, and Thomas R. Weikl
Φ values in protein folding kinetics have structural and energetic components

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Aminosäure Faltung Faltungszeit Mutanten Mutation Protein Übergangsstrukturen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Treibjagd in der Petrischale
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Dinner in the Dark – ein delikates Wechselspiel der Mikroorganismen
24.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie