Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vergoldete Bakterien

10.10.2005


Feuchtesensor: Hybrid-Nanoelektronik aus lebenden Bakterien und Goldnanopartikeln



Lebewesen als integrale Bestandteile elektronischer Bauteile? Was sich im ersten Moment nach Science Fiction anhören mag, ist ein ernst zu nehmender Ansatz für die Nanoelektronik von morgen. Lebende Mikroorganismen könnten die hier benöigten Nanostrukturen liefern. Forscher von der University of Nebraska (Lincoln, USA) zeigten nun, dass mit Goldnanopartikeln belegte Bakterien als eine Art Feuchtesensor fungieren können.



Metallische Nanopartikel haben völlig andere elektronische Eigenschaften als größere Partikel; sie sind daher sehr interessant für die Nanoelektronik. Um Nanopartikel nutzen zu können, müssen sie auf einen geeigneten Träger aufgebracht werden. "Biologische Strukturen haben sich als vielverprechende Träger erwiesen," erklärt Ravi Saraf, "vor allem wenn es gelingt, ihre Antworten auf einen Reiz zu integrieren."

Saraf und sein Mitstreiter Vikas Berry stellten einen mit hauchfeinen Elektroden aus Gold überzogenen Chip her und gaben eine Suspension von Bacillus cereus auf. Auf einer derartigen Oberfläche lagern sich die länglichen Bakterien grundsätzlich so an, dass sie Brücken zwischen den Elektrodenpaaren bilden. Nun kommen die Nanopartikel ins Spiel: Die Forscher tunkten ihren Chip in eine Lösung von Goldnanopartikeln, die mit Polylysin, einem synthetischen Protein, beschichtet waren. Von der Bakterienoberfläche werden die winzigen Goldkügelchen stark angezogen. Diese trägt lange bürstenförmige, sehr bewegliche Kettenmoleküle, die negativ geladen sind. Wie Tentakeln umfassen sie die - durch das Polylysin positiv geladenen - Goldpartikel und halten sie fest. Am Ende des Prozesses sind die Bakterien von einer dünnen Schicht aus Goldnanopartikeln umhüllt - und immer noch am Leben.

Die Forscher legten eine Spannung von 10 V an die Elektrodenpaare auf dem Chip und maßen den Strom über die bakteriellen Brücken - fertig war der bioelektronische Feuchtesensor: Wird der Feuchtigkeitsgehalt der Umgebung von 0 auf 20 % erhöht, geht der registrierte Strom um den Faktor 40 zurück. Warum reagiert dieser Chip derart empfindlich auf Feuchteänderungen? Bei Feuchtigkeit schwillt die Bakterienmembran an. Dadurch vergrößern sich die Abstände zwischen den einzelnen angelagerten Goldnanopartikeln um etwa 0,2 nm. Das ist nicht viel, aber es reicht, um den Elektronentransport zwischen den Partikeln zu erschweren. Denn anders als bei einer "normalen" makroskopischen Goldschicht, in der die Elektronen wie in einer Leitung ungehindert "fließen" können, müssen sie hier von einem Partikel zum nächsten "hüpfen".

"Unser Feuchtesensor beweist das enorme Potenzial, das in hybriden Strukturen aus Mikroorganismen und Nanopartikeln schlummert," sagt Saraf.

Ravi F. Saraf | idw
Weitere Informationen:
http://presse.angewandte.de
http://www.unl.edu/cmra/faculty/saraf.htm

Weitere Berichte zu: Bakterium Feuchtesensor Goldnanopartikeln Nanopartikel Partikel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Junger Embryo verspeist gefährliche Zelle
18.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Weiße Gespenster am Straßenrand - die Pfaffenhütchen-Gespinstmotte
18.05.2018 | Bayerische Landesanstalt für Wald und Forstwirtschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics