Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stammzellen: Nachwachsende Rohstoffe für Zelltherapien

19.09.2001


Weltweit treiben Wissenschaftler die Stammzellforschung voran. Ihre Vision: Der Ersatz von zerstörten Zellen und Geweben im menschlichen Organismus. Doch der Weg dahin ist lang und steinig. Die Wissenschaftler stehen vor einer "ungeheuren Fülle offener Fragen" und die Forschung mit so genannten embryonalen Stammzellen ist nicht nur in Deutschland Gegenstand kontroverser Debatten: ein Thema des Wissenschaftssommers in Berlin.


"Die ideale Stammzelle für Zelltherapien wäre eine körpereigene, organspezifische Stammzelle." Für Dr. Anna Wobus, die Koordinatorin eines Schwerpunktprogrammes der Deutschen Forschungsgemeinschaft zur Stammzellforschung, und ihre Kollegen ist dies klar. Die Forschung mit solchen "adulten" Stammzellen, die aus verschiedenen Organen des erwachsenen Organismus isoliert werden können, wäre - vor allem unter ethischen Aspekten - die beste Lösung.

Doch angesichts "einer enormen Fülle offener Fragen" wollen die Forscher auch hierzulande nicht auf eine andere Option verzichten: auf die Forschung mit embryonalen Stammzellen des Menschen. Diese können aus Embryonen in sehr frühen Entwicklungsstadien isoliert und in Kulturschalen vermehrt werden. "Wir sollten noch nicht alle Türen schließen", betonte Wobus angesichts der heftigen Debatte über die Forschung mit solchen Zellen, die nicht nur in Deutschland kontrovers geführt wird. "Beim derzeitigen Stand sollten wir alle Wege offen halten, die international beschritten werden, anstatt uns auf eine feste Strategie der Stammzellforschung zu beschränken", erklärte auch der Heidelberger Stammzellforscher Professor Anthony Ho.


In der Tat treiben Wissenschaftler weltweit die Stammzellforschung voran. Doch noch ist beispielsweise unklar, welche Eigenschaften - jenseits der Fähigkeiten zur Selbsterneuerung und Differenzierung in spezialisierte Zellen - eine Stammzelle definieren. Ebenso wenig wissen die Forscher, wodurch sich embryonale, fetale und adulte Stammzellen bezüglich ihres Teilungs- und Entwicklungspotenzials unterscheiden. Wichtig sei darum die vergleichende Genomanalyse solcher Zellen, betonte Wobus. Auch die Fähigkeit adulter Stammzellen, sich zu Zellen mit unterschiedlichen Funktionen zu entwickeln, scheint nicht ganz so umfassend zu sein, wie die Forscher bislang angenommen haben. Was sich in Stammzellen abspielt, wenn sie sich etwa in Blut-, Haut- oder Leberzellen differenzieren und welchen Einfluss dabei äußere Faktoren haben, muss noch intensiv untersucht werden.

Aus dem Knochenmark gewonnene Stammzellen werden schon seit über 20 Jahren in der Krebstherapie eingesetzt. Entdeckt wurden sie Anfang der sechziger Jahre. "Es hat viele Jahre gedauert, bis diese Zellen bei Patienten einsetzbar waren. Doch inzwischen verdanken unzählige Leukämiepatienten einer solchen Transplantation ihr Leben", erklärte Ho.

Das Knochenmark enthält eine Vielzahl von Stammzellen in unterschiedlichen Entwicklungsstadien. In jüngster Zeit hat sich herausgestellt, dass diese sich nicht nur zu Blutzellen, sondern auch zu Zellen anderer Gewebearten entwickeln können: Knochen- und Knorpelzellen, Sehnen-, Muskel- und Leber- sowie Nervenzellen. Diese so genannte Transdifferenzierung klappt vor allem mit Mäuse-Stammzellen. "Wie gut dies mit menschlichen Blutstammzellen gelingt, ist noch unklar", so Ho. Hinzu kommt, dass die blutbildenden Stammzellen mit maximal einem Prozent nur "eine verschwindend kleine Minderheit" im Knochenmark darstellen. Und weniger als ein Hundertstel davon ist offenbar "pluripotent" - also in der Lage, sich etwa in Nervenzellen zu verwandeln. Für Ho ist deshalb "fragwürdig, ob wir jemals so viele pluripotente Zellen gewinnen können, um damit Patienten zu behandeln". Denn bislang scheiterten die Forscher daran, diese Zellen in der Kulturschale zu vermehren. Ho: "Diese pluripotenten Stammzellen sind sehr anspruchsvoll." Auch das Selbsterneuerungspotenzial dieser Zellen sei sehr gering.

Eine denkbare Alternative sind für Ho daher Stammzellen aus dem Blut abgetriebener Föten. Diese vermehren sich deutlich besser. Ob sie sich auch effizienter in andere Körperzellen umprogrammieren lassen, wird zur Zeit untersucht.

Auch im erwachsenen Gehirn gibt es Regionen, in denen bei Tieren und Menschen Stammzellen ein Leben lang neue Nervenzellen produzieren. Ebenso gibt es Regionen mit ruhenden Stammzellen. Solche adulten neuralen Stammzellen haben Forscher sowohl bei Nagern als auch bei Menschen bereits isoliert. "In der Kulturschale ließen sich jedoch nur die Nagerzellen vermehren", berichtete Dr. Hans-Georg Kuhn von der Universität Regensburg. Transplantiert in das Gehirn von Ratten oder Mäusen entwickelten sich diese Stammzellen zu funktionsfähigen Nerven- und Stützzellen.

Für Kuhn wäre die Transplantation solcher Stammzellen jedoch nur eine denkbare Strategie. Eine andere Möglichkeit wäre die Stimulation dieser Stammzellen direkt im Gehirn, etwa durch bestimmte Wachstumsfaktoren oder Hirnbotenstoffe. Denn inzwischen wissen die Forscher, dass etwa nach Schlaganfällen oder Gehirnverletzungen diese Zellvermehrung auch natürlicherweise einsetzt. Sie reicht jedoch nicht aus, um schwere Schäden zu kompensieren.

Israel gehört zu jenen Ländern, in denen Wissenschaftler mit menschlichen embryonalen Stammzellen forschen dürfen. Professor Nissim Benvenisty von der Universität in Jerusalem betonte, dass diese Forschung wichtig sei, um die komplexen Entwicklungsprozesse besser verstehen und diese Einsichten vielleicht für die Umprogrammierung adulter Stammzellen nutzen zu können. "Wir müssen zunächst forschen, um entscheiden zu können, welche Wege sinnvoll weiterverfolgt werden können", betonte er.

Eine der Herausforderungen beim Umgang mit Stammzellen ist neben deren Kultivierung auch die Isolierung der ausgereiften, spezifischen Zellen. Da unreife embryonale Stammzellen sich unbegrenzt vermehren können, wenn sie in den Körper transplantiert werden, könnten sie zu Tumoren heranwachsen.
Um differenzierte Zellen identifizieren zu können, schleust das Team von Benvenisty in die Stammzellen ein sogenanntes Marker-Gen ein. Dieses kodiert für einen fluoreszierenden Farbstoff. Aktiv wird das Gen jedoch nur in den spezifischen, differenzierten Zellen, die sich anhand dieser Markierung automatisch heraussortieren lassen.

Noch weiß niemand, welche Art Stammzellen für therapeutische Anwendungen an Patienten infrage kommen. "Aus heutiger Sicht", so Anna Wobus, "ist wahrscheinlich nicht ein einziger Stammzelltyp für eine Zelltherapie aller Krankheitsformen geeignet."

Bei der demnächst anstehenden politischen Entscheidung, ob und in welchem Umfang auch deutsche Wissenschaftler mit menschlichen embryonalen Stammzellen arbeiten dürfen, hält der Bonner Ethikprofessor Ludger Honnefelder eine ausgewogene Regelung für möglich. "Die Stammzellforschung", so meinte er auf einer Diskussionsveranstaltung, "darf nicht pauschal in einen Topf geworfen werden, da es viele Ansätze gibt. Man muss den Einzelfall betrachten." Es sei Konsens, dass Embryonen zu Forschungszwecken nicht erzeugt werden dürften. Alle übrigen Bereiche müssten differenziert diskutiert werden.



Barbara Ritzert | idw
Weitere Informationen:
http://www.wissenschaftssommer2001.de

Weitere Berichte zu: Knochenmark Nervenzelle Stammzelle Stammzellforschung Zelltherapien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics