Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Wege für die Krebsforschung - Enzymfalle beleuchtet Fehlfunktionen in der Zelle

27.09.2005


Das Erbmolekül DNA liegt eng mit Proteinen verpackt im Zellkern vor. Die Aktivität der Gene auf der DNA wird auch über deren Verpackungsdichte gesteuert. Gene, die in bestimmten Zellen gar nicht oder nicht mehr nötig sind, werden ganz abgeschaltet. Sie sind dabei sehr dicht und unzugänglich verpackt und mit so genannten Methylgruppen markiert. Diese kleinen chemischen Verbindungen werden von DNA-Methyltransferasen, einer Gruppe von Enzymen, mit hoher Präzision an die betreffenden Stellen der DNA - meist die Kontrollregion von Genen - angehängt. Veränderungen im Methylierungsmuster der DNA werden häufig bei Krebszellen gefunden. Bislang war sehr wenig über die DNA-Methyltransferasen bekannt. In Zusammenarbeit mit anderen Wissenschaftlern gelang es Professor Heinrich Leonhardt vom Biozentrum der Ludwig-Maximilians-Universität (LMU) München nun, eine "Falle" für diese Enzyme zu entwickeln. Diese soll Einblicke in deren Funktion in der lebenden Zelle, aber auch einen neuen Ansatz zur Prävention und Behandlung von Krebserkrankungen bieten, wie in Nature Methods berichtet.



DNA-Methyltransferasen spielen eine zentrale Rolle in der Epigenetik. Dieses komplexe regulatorische Netzwerk von Modifikationen betrifft nicht direkt die in der DNA enthaltene Erbinformation, sind aber entscheidend für die Genaktivität. "Die Markierung und damit das Abschalten von Genen ist wichtig bei der Entwicklung von der befruchteten Eizelle bis zum reifen Organismus mit spezialisierten Zellen, etwa Muskel- und Nervenzellen", so Heinrich Leonhardt. "Werden dabei die falschen Gene markiert und abgeschaltet oder Gene fälschlicherweise nicht abgeschaltet, kann das fatale Folgen haben. Im schlimmsten Fall wird dadurch die fein austarierte Balance der Wachstumskontrolle gestört, sodass Krebszellen entstehen." Tatsächlich können bei fast allen Tumorerkrankungen veränderte DNA-Methylierungsmuster nachgewiesen werden.

... mehr zu:
»DNA »DNA-Methyltransferasen »Enzym »Gen »Zelle


Aufgrund dieser relativ jungen Erkenntnis aus der Krebsforschung sind die DNA-Methyltransferasen, die ja für die Markierung von Genen verantwortlich sind, für die Forschung außerordentlich interessant. Mangels anderer experimenteller Optionen wurden die Enzyme bislang nur im Reagenzglas untersucht. Die dabei gewonnenen Erkenntnisse sind aber nur von limitierter Aussagekraft, weil die Enzyme nicht in ihrer natürlichen Umgebung beobachtet werden können. Den erhofften Blick in die lebende Zelle erlaubt jetzt aber eine neue experimentelle Methode, die von Heinrich Leonhardt und seinen Mitarbeitern in Kooperation mit der Arbeitsgruppe von Dr. M. Cristina Cardoso vom Max-Delbrück-Centrum für Molekulare Medizin in Berlin entwickelt wurde.

Dabei wird den Enzymen eine Falle gestellt: Jedes Mal, wenn eine DNA-Methyltransferase eine Methylgruppe anhängt, verhindert dieser Mechanismus, dass sich das Enzym wieder von der DNA ablösen kann. Die Methyltransferase hängt fest. Weil die Enzyme mit grün oder rot fluoreszierenden Proteinen markiert wurden, sind sie in lebenden Zellen sichtbar. Spezielle Mikroskoptechnik lässt dann beobachten, ob die Falle zugeschnappt ist, und welches Enzym unter welchen Umständen aktiv oder blockiert ist. "Damit ist es nicht nur zum ersten Mal möglich, die Aktivität der Enzyme in lebenden Zellen zu verfolgen", so Heinrich Leonhardt. "Wir versprechen uns davon auch neue Erkenntnisse zur Regulation der DNA-Methyltransferasen und Hinweise auf mögliche, krebsauslösende Fehlerquellen. Außerdem wollen wir auf diesem Weg Wirkstoffe suchen, die diese Fehler wieder rückgängig machen und fälschlich markierte und somit abgeschaltete Gene wieder aktivieren. Das wiederum könnte neue Wege zur Prävention und Therapie von bestimmten Tumorerkrankungen eröffnen." (suwe)

Veröffentlichung:
"Trapped in action: direct visualization of DNA methyltransferase activity in living cells", Lothar Schermelleh, Fabio Spada, Hariharan P. Easwaran, Kourosh Zolghadr, Jean B. Margot, M. Cristina Cardoso & Heinrich Leonhardt, Nature Methods, 22. September 2005, online edition

Begleitender und kommentierender Artikel:
"In living color: DNA methyltransferase caught in the act", Kornel Schuebel & Steve Baylin, Nature Methods

Ansprechpartner:
Prof. Dr. Heinrich Leonhardt
Biozentrum der LMU
Tel: 089 / 2180-74232
Fax: 089 / 2180-74236
E-Mail: H.Leonhardt@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: DNA DNA-Methyltransferasen Enzym Gen Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie