Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ertappt - Forscher können erstmals Enzyme bei der Arbeit in lebender Zelle beobachten

23.09.2005


Eine neue Methode, mit der sie erstmals in der lebenden Zelle beobachten können, wie Gene reguliert, das heißt, mit Hilfe von Enzymen markiert und abgeschaltet werden, haben Forscher des Max-Delbrück-Centrums für Molekulare Medizin (MDC) Berlin-Buch und der Ludwig-Maximilians-Universität München (LMU) entwickelt. Ist dieser Vorgang gestört, können Mißbildungen und schwere Erkrankungen, wie zum Beispiel Krebs, die Folge sein. Die Technik ist deshalb insbesondere für die Krebsforschung von großer Bedeutung. Jetzt hat Nature Methods* die Arbeit von Dr. Lothar Schermelleh (LMU), Dr. Cristina Cardoso (MDC) und Prof. Heinrich Leonhardt (MDC, LMU) vorab online (doi:10.1038/nmeth794) veröffentlicht.


In der "Falle": Enzyme (rot), die Gene markieren und abschalten. Forscher des Max-Delbrück-Centrums für Molekulare Medizin (MDC) Berlin-Buch und der Ludwig-Maximilians-Universität München können mit der von ihnen entwickelten Technik erstmals Enzyme bei der Arbeit in einer lebenden Zelle (grau) beobachten. Photo: Kourosh Zolghadr/Copyright: MDC/LMU



Die Träger der Erbinformation, die DNA-Fäden, liegen nicht nackt im Zellkern, sondern werden mit speziellen Proteinen verpackt. Die Aktivität der einzelnen Gene wird unter anderem über deren Verpackungsdichte gesteuert. So sind aktive Gene locker verpackt und der DNA-Faden für die Abschrift leicht zugänglich. Werden bestimmte Gene in einer spezialisierten Zelle, wie zum Beispiel einer Muskelzelle, nicht mehr benötigt, werden sie abgeschaltet, besonders dicht und unzugänglich aufgewickelt und von der Zelle mit so genannten Methylgruppen gekennzeichnet. Dafür sind bestimmte Enzyme, die DNA-Methyltransferasen, verantwortlich. Sie hängen die Methylgruppen an die Kontrollregion der betroffenen Gene und rasen danach wieder durch den Zellkern.

... mehr zu:
»DNA-Methyltransferasen »Enzym »Gen »LMU »Zelle


Das Markieren und Abschalten von Genen ist ein lebenswichtiger Vorgang. Werden jedoch die falschen Gene markiert und abgeschaltet, kann das fatale Folgen haben. Im schlimmsten Fall wird die fein austarierte Balance der Wachstumskontrolle gestört und es entstehen Krebszellen. So finden sich häufig bei Tumoren veränderte Methylierungsmuster, wodurch wichtige Gene für die Wachstumskontrolle fälschlich abgeschaltet werden, so dass sich ein Tumor ungebremst ausbreiten kann.

Bislang konnten die DNA-Methyltransferasen mangels Alternativen nur im Reagenzglas untersucht werden, was nicht der natürlich Umgebung in einer lebenden Zelle entspricht. Um sie direkt "in vivo" erforschen zu können, hat die Arbeitsgruppe von Prof. Leonhardt in Kooperation mit Dr. Cardoso die DNA-Methyltransferasen mit grün oder rot leuchtenden Farbstoffen (grün/rot fluoreszierenden Proteinen) markiert und somit in lebenden Zellen sichtbar gemacht. Damit sie auch die Aktivität dieser angefärbten Enzyme messen können, haben die Forscher spezielle "Fallen" (traps) in der Zelle aufgestellt. Jedesmal wenn eine Methyltransferase eine Methylgruppe anhängt, das heißt ein Gen für die Abschaltung markiert, schnappt die Falle zu, das Enzym hängt fest. Da die Enzyme farbig leuchten, kann dieses In-die-Falle-gehen mit geeigneten Mikroskopen beobachtet werden.

Mit dieser Technik ist es jetzt erstmalig möglich ein Enzym in lebenden Zellen bei der Arbeit zu beobachten. Die Forscher versprechen sich davon neue Erkenntnisse zur Regulation der DNA-Methyltransferasen und Hinweise auf mögliche, krebsauslösende Fehlerquellen. Ferner wollen sie mit dieser neuen Technik Wirkstoffe suchen, die diese Fehler wieder rückgängig machen und fälschlich abgeschaltete Gene wieder anschalten können. In Zukunft könnten so neue Wege zur Prävention und Therapie von Tumorerkrankungen möglich werden.

*Trapped in action: direct visualization of DNA methyltransferase activity in living cells
Lothar Schermelleh1, Fabio Spada1, Hariharan P Easwaran2, Kourosh Zolghadr1, Jean B Margot2, M Cristina Cardoso2 & Heinrich Leonhardt1,2

1Ludwig Maximilians University Munich, Department of Biology II, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany. 2Max Delbrueck Center for Molecular Medicine, FVK, Wiltbergstr. 50, 13125 Berlin, Germany. Correspondence should be addressed to H.L. (h.leonhardt@lmu.de).

Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Barbara Bachtler
Robert-Rössle-Straße 10
13125 Berlin
Tel.: 0049/30/94 06 - 38 96
Fax: 0049/30/94 06 - 38 33
e-mail:presse@mdc-berlin.de

Barbara Bachtler | idw
Weitere Informationen:
http://www.mdc-berlin.de
http://www.nature.com/nmeth/journal/v2/n10/pdf/nmeth1005-736.pdf

Weitere Berichte zu: DNA-Methyltransferasen Enzym Gen LMU Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten