Der Stoff, von dem das Leben abhängt

GBF-Wissenschaftler analysieren Enzym-Struktur für die Blutfarbstoffbildung

Häm heißt der rote Farbstoff, von dem das Leben abhängt. Er ist ein wichtiger Bestandteil menschlichen und tierischen Blutes und transportiert den lebenserhaltenden Sauerstoff von der Lunge in das Gewebe. Wissenschaftler der Gesellschaft für Biotechnologische Forschung (GBF) und der Technischen Universität Braunschweig (TU) haben jetzt die dreidimensionale Struktur des Enzyms aufgeklärt, das den ersten Schritt der Hämbildung im Körper katalysiert. „Mit unserem Projekt konnten wir ein Stück Wissenschaftsgeschichte abschließen“, erklärt GBF-Bereichsleiter Professor Dirk Heinz: Mit ALAS – so der wissenschaftliche Name des Moleküls – seien nun die Strukturen aller an der Häm-Bildung beteiligten Enzyme bekannt. Ihre Ergebnisse veröffentlichen die Wissenschaftler jetzt in der Fachzeitschrift EMBO Journal.

Die Herstellung von Häm ist im menschlichen oder tierischen Körper wie eine Fließbandarbeit organisiert: Insgesamt zehn Enzyme haben im Produktionsprozess jeweils eine bestimmte Aufgabe. Sie erhalten vom vorgeschalteten Enzym ein Zwischenprodukt, verändern es gezielt und reichen es dann an das nächste Enzym in der Kette weiter. ALAS (5-Aminolevulinat-Synthase) habe dabei eine besondere Bedeutung, stellt TU-Professor Dieter Jahn fest: „Da dieses Enzym im Syntheseweg an erster Stelle steht, stört eine defekte ALAS die Blutbildung entscheidend. Krankheiten wie Anämien sind die Folge.“

Ursache für eine beeinträchtigte ALAS ist ein Defekt auf dem X-Chromosom. Menschen, die davon betroffen sind, leiden an einer schweren Anämie: Obwohl sie keinen Eisenmangel haben – die häufigste Ursache für diese Krankheiten – bildet ihr Körper nur unzureichend roten Blutfarbstoff und wird schlechter mit Sauerstoff versorgt. Symptome reichen von blasser Haut, Müdigkeit oder Konzentrationsschwäche bis zu schweren Organschäden auf Grund einer toxischen Eisenanreicherung im Gewebe. Den Betroffenen können die Erkenntnisse der Wissenschaftler langfristig helfen: „Mit der nun bekannten ALAS-Struktur wird es möglich, die Ursachen dieser Anämie viel besser zu verstehen, die Symptome zu erklären und später die Therapie zu verbessern“, so Arbeitsgruppenleiter Dr. Wolf-Dieter Schubert.

Möglich gemacht hat die Strukturanalyse der ALAS ein Trick der Evolution: An einem biologischen Mechanismus, der sich als erfolgreich erwiesen hat, hält das Leben über Milliarden von Jahren hinweg fest. So auch bei der Biosynthese von Häm: ALAS findet sich schon bei evolutionär sehr alten Bakterien, den so genannten Proteobakterien, die das „Produktionsverfahren“ für die Farbstoffe, zu denen auch das Häm gehört, in der Frühzeit des Lebens vor 3,5 Milliarden Jahren entwickelt haben. Für Ihre Untersuchungen konnten die GBF-Wissenschaftler deshalb auf bakterielle ALAS zurückgreifen: Sie ähnelt dem menschlichen Enzym sehr stark – und ist so stabil, dass man es für die strukturanalytischen Untersuchungen aufbereiten kann.

Hinweis für die Medien:

Ausführliche Informationen bietet der Originalartikel: Isabel Astner, Jörg O. Schulze, Joop van den Heuvel, Dieter Jahn, Wolf-Dieter Schubert and Dirk W. Heinz: Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans. The EMBO Journal (2005) 24, 18, 3166-3177

Ansprechpartner Hannes Schlender GBF – Gesellschaft für Biotechnologische Forschung mbh – Presse- und Öffentlichkeitsarbeit – Mascheroder Weg 1 D – 38124 Braunschweig Tel +49 (0) 531.6181-508 Fax +49 (0) 531.6181-511

Media Contact

Hannes Schlender GBF

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer