Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnete im Gleichtakt

16.09.2005


Internationale Forschergruppe am Dresdner Max-Planck-Institut für Chemische Physik fester Stoffe erreicht erstmals Bose-Einstein-Kondensation im Festkörper


Eine Kondensation von magnetischen Anregungen in einen makroskopischen Quantenzustand wurde von einer internationalen Forschergruppe am Dresdner Max-Planck-Institut für Chemische Physik fester Stoffe zum ersten Mal in einem Festkörper nachgewiesen.

Weltweit findet eine intensive Suche nach dem Phänomen der Bose-Einstein-Kondensation (BEK) im Festkörper statt, deren potentielle Existenz in zahlreichen theoretischen Arbeiten vorhergesagt wird. Das Faszinierende an diesem Effekt ist, dass alle "Teilchen" (typischer Weise 1023) einen einheitlichen makroskopischen Quantenzustand annehmen, also mit einer einzigen Wellenfunktion beschrieben werden können und darüber hinaus alle Teilchen im Gleichtakt schwingen.


Die Bose-Einstein-Kondensation tritt bei Temperaturen knapp oberhalb des absoluten Temperaturnullpunkts auf. Das erste makroskopische Quantenphänomen, das mit der Bose-Einstein-Kondensation interpretiert werden konnte, war im Jahr 1934 die Suprafluidität eines Heliumisotops. Die experimentelle Realisierung der Bose-Einstein-Kondensation von schwereren Atomen gelang erst 1995, für die der deutsche Physiker Wolfgang Ketterle zusammen mit zwei amerikanischen Kollegen 2001 den Physik-Nobelpreis erhielt. Vorausetzung dazu sind sehr tiefe Temperaturen und eine relativ geringe Anzahl Atome pro cm3 (typischerweise 1014).

Nun ist es Dresdner Wissenschaftlern am Max-Planck-Institut für Chemische Physik fester Stoffe zum ersten Mal gelungen, zweifelsfrei den Nachweis für eine Bose-Einstein-Kondensation von magnetischen Anregungen in einem Festkörper zu erbringen. Entscheidend für den Durchbruch der Dresdner Gruppe war die erfolgreiche Kombination von extrem tiefen Temperaturen und hohen Magnetfeldern. Hierbei kommt dem Magnetfeld, das mehr als das hunderttausendfache der Stärke des Erdmagnetfeldes beträgt, besondere Bedeutung zu. Es erlaubt die Anzahl der kondensierten Teilchen - in diesem Fall magnetische Elementaranregungen, so genannten Magnonen - exakt einzustellen. Untersucht wurden die magnetischen Eigenschaften des Isolators Cs2CuCl4 bis hinab zu etwa drei hundertstel Grad über dem absoluten Temperaturnullpunkt. Die Kupferatome sind in dieser Substanz magnetisch und bilden aufgrund ihrer räumlichen Anordnung im Festkörper Ebenen aus. Diese Ebenen mit ihren speziellen Eigenschaften machen die Verbindung zu einem aussichtsreichen Kandidaten für eine mögliche Bose-Einstein-Kondensation. Die präzise Messung der spezifischen Wärme bei abnehmender Temperatur, aber konstantem Magnetfeld (bis zu 12 Tesla), lieferte die Temperaturwerte, unterhalb derer die Substanz in einen magnetisch geordneten Zustand übergeht. Diese Ordnungstemperatur geht in einer für die Bose-Einstein-Kondensation charakteristischen Weise gegen den Temperaturnullpunkt, wenn das Magnetfeld erhöht wird. Neben dieser Beobachtung zeigen die Experimente weitere Fakten, die für das Auftreten einer Bose-Einstein-Kondensation erfüllt sein müssen. Damit ist Cs2CuCl4 der erste Festkörper, in der alle theoretisch geforderten Bedingungen in hervorragender Weise im Experiment nachgewiesen wurden.

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie