Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnete im Gleichtakt

16.09.2005


Internationale Forschergruppe am Dresdner Max-Planck-Institut für Chemische Physik fester Stoffe erreicht erstmals Bose-Einstein-Kondensation im Festkörper


Eine Kondensation von magnetischen Anregungen in einen makroskopischen Quantenzustand wurde von einer internationalen Forschergruppe am Dresdner Max-Planck-Institut für Chemische Physik fester Stoffe zum ersten Mal in einem Festkörper nachgewiesen.

Weltweit findet eine intensive Suche nach dem Phänomen der Bose-Einstein-Kondensation (BEK) im Festkörper statt, deren potentielle Existenz in zahlreichen theoretischen Arbeiten vorhergesagt wird. Das Faszinierende an diesem Effekt ist, dass alle "Teilchen" (typischer Weise 1023) einen einheitlichen makroskopischen Quantenzustand annehmen, also mit einer einzigen Wellenfunktion beschrieben werden können und darüber hinaus alle Teilchen im Gleichtakt schwingen.


Die Bose-Einstein-Kondensation tritt bei Temperaturen knapp oberhalb des absoluten Temperaturnullpunkts auf. Das erste makroskopische Quantenphänomen, das mit der Bose-Einstein-Kondensation interpretiert werden konnte, war im Jahr 1934 die Suprafluidität eines Heliumisotops. Die experimentelle Realisierung der Bose-Einstein-Kondensation von schwereren Atomen gelang erst 1995, für die der deutsche Physiker Wolfgang Ketterle zusammen mit zwei amerikanischen Kollegen 2001 den Physik-Nobelpreis erhielt. Vorausetzung dazu sind sehr tiefe Temperaturen und eine relativ geringe Anzahl Atome pro cm3 (typischerweise 1014).

Nun ist es Dresdner Wissenschaftlern am Max-Planck-Institut für Chemische Physik fester Stoffe zum ersten Mal gelungen, zweifelsfrei den Nachweis für eine Bose-Einstein-Kondensation von magnetischen Anregungen in einem Festkörper zu erbringen. Entscheidend für den Durchbruch der Dresdner Gruppe war die erfolgreiche Kombination von extrem tiefen Temperaturen und hohen Magnetfeldern. Hierbei kommt dem Magnetfeld, das mehr als das hunderttausendfache der Stärke des Erdmagnetfeldes beträgt, besondere Bedeutung zu. Es erlaubt die Anzahl der kondensierten Teilchen - in diesem Fall magnetische Elementaranregungen, so genannten Magnonen - exakt einzustellen. Untersucht wurden die magnetischen Eigenschaften des Isolators Cs2CuCl4 bis hinab zu etwa drei hundertstel Grad über dem absoluten Temperaturnullpunkt. Die Kupferatome sind in dieser Substanz magnetisch und bilden aufgrund ihrer räumlichen Anordnung im Festkörper Ebenen aus. Diese Ebenen mit ihren speziellen Eigenschaften machen die Verbindung zu einem aussichtsreichen Kandidaten für eine mögliche Bose-Einstein-Kondensation. Die präzise Messung der spezifischen Wärme bei abnehmender Temperatur, aber konstantem Magnetfeld (bis zu 12 Tesla), lieferte die Temperaturwerte, unterhalb derer die Substanz in einen magnetisch geordneten Zustand übergeht. Diese Ordnungstemperatur geht in einer für die Bose-Einstein-Kondensation charakteristischen Weise gegen den Temperaturnullpunkt, wenn das Magnetfeld erhöht wird. Neben dieser Beobachtung zeigen die Experimente weitere Fakten, die für das Auftreten einer Bose-Einstein-Kondensation erfüllt sein müssen. Damit ist Cs2CuCl4 der erste Festkörper, in der alle theoretisch geforderten Bedingungen in hervorragender Weise im Experiment nachgewiesen wurden.

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose - Fettversorgung für Pilze
25.07.2017 | Ludwig-Maximilians-Universität München

nachricht Lupinen beim Trinken zugeschaut – erstmals 3D-Aufnahmen vom Wassertransport zu Wurzeln
24.07.2017 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungsnachrichten

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungsnachrichten

Lupinen beim Trinken zugeschaut – erstmals 3D-Aufnahmen vom Wassertransport zu Wurzeln

24.07.2017 | Biowissenschaften Chemie