Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gendefekt legt die Blutbildung lahm und erhöht das Krebsrisiko

08.09.2005


Wissenschaftler vom Biozentrum der Uni Würzburg haben mit Kollegen aus Düsseldorf und New York ein Gen entdeckt, das eine wichtige Rolle bei der Krebsabwehr spielt. Darüber berichten sie im Magazin "Nature Genetics".


Das BRIP1-Protein öffnet die Stränge der DNA-Doppelhelix. Diese Funktion ist notwendig für Reparaturvorgänge an der DNA. Abbildung nach: Genetic Science Learning Center, University of Utah



Von Würzburger Seite waren an diesem Forschungserfolg Professor Detlev Schindler und seine Doktoranden Kornelia Neveling und Reinhard Kalb vom Institut für Humangenetik beteiligt. Die Wissenschaftler fanden heraus, dass bei Patienten mit der sehr seltenen Blutkrankheit Fanconi-Anämie ein Gen namens BRIP1 defekt sein kann. Wenn beide Kopien des Gens mutiert sind, führt dies zum Zusammenbruch des blutbildenden Systems im Knochenmark und zu einem erhöhten Krebsrisiko.

... mehr zu:
»BRIP1 »Erbgut »Fanconi-Anämie »Gen »Krebsrisiko


Das Gen BRIP1 steht in einer engen Beziehung zum bekannten Brustkrebs-Gen BRCA1. "Beide zusammen spielen vermutlich eine wichtige Rolle bei der Reparatur von DNA-Schäden", erläutert Schindler. Das erklärt, warum das Erbgut bei Patienten mit Fanconi-Anämie instabil ist und warum die Chromosomen viel öfter auseinanderbrechen als bei Gesunden. Die Konsequenz daraus: Betroffene haben ein höheres Krebsrisiko, sie erkranken zum Beispiel häufig an Blutkrebs. Der Würzburger Humangenetiker: "Ein intaktes BRIP1-Gen ist offenbar für die Stabilität unseres Erbguts und für die fehlerfreie Entfernung von DNA-Schäden unverzichtbar."

Die Fanconi-Anämie wurde erstmals 1927 von dem Schweizer Kinderarzt Guido Fanconi beschrieben. Manche der Betroffenen haben nur vereinzelte oder wenig folgenschwere Beeinträchtigungen, die zum Teil erst im höheren Lebensalter auffällig werden. Bei anderen treten gleich nach der Geburt mehrere, zum Teil ernste Fehlbildungen auf. Beobachtet werden unter anderem Wachstumsverzögerungen, Fehlbildungen des Hüftgelenks, Schwerhörigkeit oder Herzfehler.

Die Würzburger Forscher suchen nun weitere Gene und Proteine, mit denen BRIP1 in Wechselwirkung tritt. Davon erhoffen sie sich noch mehr Erkenntnisse über die Mechanismen, die bei der Fanconi-Anämie zur mangelhaften DNA-Reparatur und zur Krebsentstehung führen. Außerdem fahnden sie im Erbgut weiterhin nach Genen, die an der Entstehung dieser Erbkrankheit mitwirken. Elf solche Gene sind bislang schon bekannt.

"The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia", Orna Levran, Claire Attwooll, Rashida T Henry, Kelly L Milton, Kornelia Neveling, Paula Rio, Sat Dev Batish, Reinhard Kalb, Eunike Velleuer, Sandra Barral, Jurg Ott, John Petrini, Detlev Schindler, Helmut Hanenberg & Arleen D Auerbach, Nature Genetics 37, Seiten 931 - 933, 1. September 2005.

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: BRIP1 Erbgut Fanconi-Anämie Gen Krebsrisiko

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics