Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Photochemische "Handarbeit" - TUM-Chemiker entwickeln neuen enantioselektiven Reaktionstyp

08.09.2005


Einem Wissenschaftler-Team am Lehrstuhl für Organische Chemie der TU München (Prof. Thorsten Bach) ist es gelungen, eine durch Licht induzierte, photochemische Reaktion erstmals mit Hilfe eines Katalysators zu steuern und neue, so genannte "enantioselektive" Reaktionstypen zu entwickeln. Über die aktuellen Forschungsergebnisse wurde kürzlich in der Zeitschrift Nature berichtet.*) Für die Pharmaindustrie sind derartige Reaktionen und die damit zugänglichen Verbindungen von hohem Interesse, lassen sich hierdurch doch ganz gezielt bestimmte Moleküle (Enantiomere) mit der gewünschten Wirkung herstellen und als Wirksubstanz einsetzen.



Viele Dinge des Alltags gibt es in zwei Versionen: Unsere Hände beispielsweise sind in ihrer Struktur gleich, verhalten sich zueinander aber spiegelbildlich. Viele chemische Verbindungen zeigen dieses ?Händigkeit" genannte Phänomen ebenfalls: sie sind "chiral" (nach dem griechischen Wort für Hand). In der Wissenschaft heißen die beiden zueinander spiegelbildlichen Formen - die Hände - Enantiomere, die in einer ansonsten gleichen Verbindung häufig jedoch ganz unterschiedliche biologische Eigenschaften aufweisen. So kann bei einem medizinischen Wirkstoff das eine Enantiomer den gewünschten Effekt haben, das andere aber keine oder gar negative Wirkung. Deshalb ist es für die pharmazeutische Industrie von großem Interesse, gezielt die "richtigen" Enantiomere herstellen zu können. Bezeichnet wird dies als "enantioselektive Synthese", die sehr diffizil ist und oftmals nur für einen bestimmten Typ von Reaktion möglich.



Ein Katalysator beschleunigt eine Reaktion, geht aber selbst aus dieser Reaktion unverändert hervor. Photochemische Reaktionen, wie sie auch im natürlichen Prozess der Photosynthese eine wichtige Rolle spielen, sind häufig mit einem Elektronentransfer verbunden: Ein Elektron wird von einem Molekül auf ein anderes übertragen. Das Forscherteam um Prof. Bach konnte nun die Enantioselektivität einer derartigen Elektronentransfer-Reaktion erstmals gezielt beeinflussen. Dies gelang mit Hilfe eines organischen Katalysators, der die Reaktion sowohl beschleunigt als auch die Händigkeit des Reaktionsprodukts bestimmt. Er bindet an das Ausgangsmolekül, absorbiert Licht und nutzt diese Energie, um ein Elektron aus dem Ausgangsmolekül zu stehlen. Danach wandelt sich das Ausgangsmolekül zum Produkt um. Das Produktmolekül erhält das gestohlene Elektron wieder vom Katalysator zurück. Da der Katalysator wie ein Handschuh wirkt, in den nur die richtige Hand hineinpasst, entsteht auch nur das Produkt, das die gewünschte Händigkeit hat. Das Prinzip dieser Reaktion könnte für die Entwicklung neuer Reaktionen in der pharmazeutischen Industrie von enormer Bedeutung sein.

*) Nature 2005, 436, 1139-1140

Kontakt:
Prof. Dr. Thorsten Bach, Lehrstuhl für Organische Chemie I
Tel: 089/289-13330, thorsten.bach@ch.tum.de

www.tu-muenchen.de/ | idw
Weitere Informationen:
http://www.tu-muenchen.de/

Weitere Berichte zu: Ausgangsmolekül Elektron Enantiomer Katalysator Reaktionstyp

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie