Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefährliche Trickser: Manche Bakterien nutzen Immunzellen, um sich in ihnen zu vermehren

01.09.2005


Fresszellen, so genannte Makrophagen, sind effektive Waffen unseres Immunsystems, die eingedrungene Erreger verschlingen und verdauen. Manche Bakterien können diese Abwehr aber unterlaufen und sich sogar in Fresszellen vermehren. Zellbiologen der Universität Bonn haben in einer soeben in der Zeitschrift "Traffic" (Band 6, Heft 8, August 2005, Seiten 635-653) erschienenen Arbeit gezeigt, mit welchen Tricks die Mikroben arbeiten. Ihr Ergebnis: Die Erreger verhindern unter anderem, dass die Erreger in den "Magen" der Makrophagen gelangen, der ihnen Schaden zufügen könnte.


Elektronenmikroskopische Aufnahme von zwei Rhodococcus equi-Bakterien in einem Phagosom eines Mausmakrophagen
(c) AG Haas / Universität Bonn



Alarm in der Pferdelunge! Gerade ist ein Bakterium mit der Atemluft in die Bronchien gesaugt worden, und schon rückt die Immunabwehr an, um den Eindringling unschädlich zu machen. Angelockt von bakterientypischen Substanzen, welche die Mikrobe wie ein Wolke umgeben, finden die "Makrophagen" genannten Fresszellen ihren Weg. Sobald sie den Eindringling aufgespürt haben, stülpen sie einen Teil ihrer eigenen Zellmembran wie eine Kapuze über das Bakterium, wodurch ein Membransack entsteht, in dem der Erreger eingeschlossen ist. Dieses "Phagosom" (von griechisch "phagein" = fressen) schnürt sich ins Innere des Makrophagen ab und ist nun der Ort, auf den sich das ganze Waffenarsenal der Fresszelle konzentriert: Das Phagosom wird mit Sauerstoffradikalen und Säure geflutet. Andere Membransäckchen, die Lysosomen, verschmelzen mit dem Phagosom und konfrontieren die Mikrobe mit hochreaktiven Verdauungsenzymen. Wenige Stunden nach den ersten Alarmzeichen ist von dem Bakterium nichts mehr zu sehen, die potenzielle Gefahr ist gebannt.



Vermehrung im Killer

Soweit der Normalfall. Eine ganze Reihe von Krankheitserregern hat sich aber darauf spezialisiert, genau diesen Teil der Abwehr auszutricksen und es sich ausgerechnet in jenen Makrophagen gemütlich zu machen, die eigentlich dazu da sind, sie zu töten.

Einer dieser Erreger ist Rhodococcus equi. Dieses Bakterium kann in jungen Fohlen eine Lungenerkrankung auslösen, die der menschlichen Tuberkulose sehr ähnlich ist. So ist es auch nicht allzu überraschend, dass Rhodococcus equi mit dem Tuberkelbazillus (Mycobacterium tuberculosis) eng verwandt ist. Da Makrophagen das Hauptziel von Rhodococcus in der Pferdelunge sind, findet man dort während einer Infektion viele Rhodokokken.

Im Bonner Institut für Zellbiologie haben Eugenia Fernandez und Marco Polidori in der Arbeitsgruppe von Professor Dr. Albert Haas untersucht, warum Rhodococcus equi in Makrophagen nicht getötet und verdaut wird, sondern sich dort sogar vermehren kann. Dabei konnte die Gruppe zeigen, dass die Rhodokokken nach der Aufnahme durch den Makrophagen eine Art Bremsklotz einlegen und die Verschmelzung der sie umgebenden Membranhülle mit den Lysosomen verhindern. Dadurch sind die Bakterien gar nicht erst den vielen Verdauungsenzymen ausgesetzt. Außerdem können die Bakterien auch die Ansäuerung ihres Phagosoms verhindern.

Manipulative Mikroben

"Insgesamt heißt das, dass die Rhodokokken ihre Wirtszelle manipulieren, es sich so in einer Säure- und Verdauungsenzym-losen Umgebung bequem machen und sich dort vermehren", so Professor Haas. Innerhalb weniger Tage nach Beginn der Infektion sterben die Makrophagen an der Infektion: Sie fallen auseinander und entlassen die vervielfachten Erreger.

Die Bonner Zellbiologen haben bereits vorher zeigen können, dass dieser Zelltod "nekrotisch" ist. Das bedeutet, dass Zellbestandteile austreten und damit weitere Immunzellen anlocken und aktivieren. Letztlich kommt es zur Entzündung und Gewebeschädigung. "Es könnte sein, dass Rhodokokken das gar nicht so ungern haben", meint Professor Haas, "denn dann können sie sich gleich einen vorbeikommenden frischen Makrophagen schnappen und sich darin wieder einnisten."

Als nächstes wollen die Bonner Zellbiologen der Frage nachgehen, welche bakteriellen Eigenschaften dafür wichtig sind, die Verschmelzung von Phagosom und Lysosom zu verhindern, und wie das Immunsystem trotz aller bakteriellen Tricks normalerweise eine Infektion niederkämpft.

Rhodokokken können allerdings auch in AIDS-Patienten Tuberkulose-artige Erkrankungen verursachen und zum Tod führen. "Das ist ebenfalls ein Aspekt, der für unsere Arbeit wichtig ist", betont Haas. "Wir gehen davon aus, dass unsere Forschungen dazu beitragen können, die Tuberkulose beim Menschen besser zu verstehen." Anders als Fohlen brauchen sich jedoch die allermeisten Menschen vor dem Erreger nicht zu fürchten. "In jeder Schaufel Erde einer betroffenen Pferdefarm finden sich Abermillionen Rhodokokken, und trotzdem kommt es fast nie vor, dass einigermaßen gesunde Menschen daran erkranken."

Kontakt:
Prof. Dr. Albert Haas
Institut für Zellbiologie der Universität Bonn
Telefon: 0228/73-63 40
E-Mail: albert.haas@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Bakterium Fresszelle Infektion Makrophagen Phagosom Rhodococcus Rhodokokken

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit