Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlafende Eier durch Befruchtung geweckt

30.08.2005


Immunfluoreszenz-Aufnahme einer meiotischen Spindel in einem Froschei, das sich durch den zytostatischen Faktor noch im Ruhezustand befindet (die Chromosomen sind blau, die Mikrotubuli rot dargestellt). In der Mitte der Spindel sind die Chromosomen angeordnet. Sobald das Ei befruchtet wird, trennen sie sich und die zweite meiotische Teilung wird beendet. Bild: MPI für Biochemie


Max-Planck-Wissenschaftler identifizieren das entscheidende molekulare Signal im Zellteilungszyklus einer Eizelle


Das Wunder des Lebens: Eine Eizelle verschmilzt mit einer Samenzelle und aus der befruchteten Zelle entsteht schließlich nach zigtausend Zellteilungen ein Mensch. Die einzelnen Schritte des Zellteilungszyklus sind bekannt, ihre Programmierung, d.h. jene komplexen Signalketten, die die Zellteilung steuern, hingegen noch nicht vollständig. Insbesondere ein Rätsel blieb bisher ungelöst: Die Eizellen von Wirbeltieren befinden sich vor ihrer Befruchtung in einer Ruhephase. Erst mit der Befruchtung wird der letzte Schritt der Zellteilung (die Meiose-Phase II), die zur Reduktion des Chromosomensatzes in der Zelle führt, tatsächlich vollendet. Dies ist eine wichtige Voraussetzung für die Neukombination der Erbanlagen bei der sexuellen Fortpflanzung. Max-Planck-Wissenschaftlern aus Martinsried ist es nun gelungen, den entscheidenden Faktor dieses Zellgeschehens zu identifizieren und damit eine seit 30 Jahren andauernde Diskussion in der Zellbiologie einen wichtigen Schritt voranzubringen (Nature, advanced online publication, 28. August 2005).

Wenn sich ein Einzeller, wie beispielsweise eine Amöbe, teilt und zwei Nachkommen hervorbringt, pflanzt sich ein ganzes Lebewesen durch die Verdopplung einer Zelle fort. Diese Form der Vermehrung wird als asexuell bezeichnet. Auch Lebewesen, die sich sexuell fortpflanzen, wie beispielsweise der Mensch, entwickeln sich durch Zellteilung aus einer einzigen Zelle: aus der befruchteten Eizelle oder Zygote. Die Zygote wiederum entsteht durch Verschmelzung zweier Geschlechtszellen - einer Samenzelle mit einer Eizelle - und enthält somit einen doppelten Chromosomensatz mit den entsprechenden mütterlichen und väterlichen Genen. Diese Gene werden an alle im Zuge der weiteren Entwicklung entstehenden Körperzellen weitergegeben. Daher sind diese somatischen Zellen ebenso diploid, also mit einem zweifachen Chromosomensatz ausgestattet, wie die Zygote.


Nun kann sich ein so komplexes Gebilde wie eine Zelle nicht einfach verdoppeln, indem sie sich in der Mitte durchtrennt. Im Rahmen der herkömmlichen Zellteilung (Mitose) - die in dieser Form auch bei der Amöbe abläuft - muss das genetische Material, die DNA, zunächst verdoppelt und dann präzise auf die beiden Tochterzellen verteilt werden. Mit aufwändigen Fluoreszenzverfahren können die Wissenschaftler diesen Prozess in faszinierenden Farbbildern festhalten. Für die Herstellung von Geschlechtszellen (Gameten) - Eizellen und Samenzellen - muss der doppelte Chromosomensatz allerdings wieder zum einfachen reduziert werden. Dies geschieht durch die so genannte Meiose, eine abgewandelte Form der Zellteilung. Dabei werden väterliche und mütterliche Erbinformationen unterschiedlich verteilt. Unsere Nachkommen haben daher ihren ganz individuellen Mix an väterlichen und mütterlichen Genen - das macht jeden Menschen so einzigartig. Und die Möglichkeit im Zuge sexueller Fortpflanzung Nachkommen mit vollkommen neuen Eigenschaften zu produzieren, erweist sich auch in der Evolution als Vorteil.

Der Teilungszyklus einer Zelle wird von spezifischen chemischen Signalen vorangetrieben, die im Zytoplasma der Zelle vorhanden sind. Wissenschaftler am Max-Planck-Institut für Biochemie in Martinsried bei München aus der Abteilung von Erich Nigg befassen sich mit diesem Zellzyklus-Kontrollsystem. In der von Thomas Mayer geleiteten Nachwuchsgruppe interessiert man sich besonders für die Moleküle bzw. Signalsubstanzen, welche die Meiose-Phase II - jene Phase, in der die Reduktion des Chromosomensatzes erfolgt - in Gang setzen und koordinieren. Die Wissenschaftler haben sich zum Ziel gesetzt, ein seit 70 Jahren ungelöstes Rätsel aufzuklären: Seit dieser Zeit weiß man, dass die Eizellen von Wirbeltieren, also auch die des Menschen, ihren Zellzyklus erst nach der Befruchtung abschließen. Die Signalproteine, die diesen Ruhezustand aufrechterhalten, sind inzwischen zwar benannt worden, aber nicht wirklich erforscht.

Dabei handelt es sich um eine Summe von Proteinaktivitäten, die in der Fachliteratur als zytostatischer Faktor CSF (engl. cytostatic factor) bezeichnet werden. CSF blockiert die Phase II der Meiose. Sofort nach der Befruchtung wird dieser Faktor jedoch abgebaut, und der Weg freigemacht, damit die Eizelle ihre Teilung abschließen kann. Dann können die beiden Zellkerne von Samen und Eizelle miteinander verschmelzen. Da CSF sehr instabil ist und nach der Befruchtung sofort verschwindet, waren die Details dieser Regulation bisher unbekannt.

Nadine R. Rauh und Andreas Schmidt aus Mayers Forschungsgruppe haben die Regulation des zytostatischen Faktors an Froscheiern - in zellbiologischen Labors weltweit das Modellsystem schlechthin für Zellteilungsstudien - untersucht. Die Martinsrieder Zellbiologen fanden heraus, dass ein spezifisches Enzym, die Kinase Plk1, einen Faktor steuert, der interessanterweise sofort nach der Befruchtung in den Eizellen verschwindet. Rauh und Schmidt tauften den Faktor XErp1. Dieses Protein ist - das zeigten die Experimente - notwendig, um die Eizellen in ihrem Ruhezustand in Meiose-Phase II zu halten.

Der von Mayer und seinen Mitarbeitern gefundene Faktor XErp1 erfüllt alle bisher für den zytostatischen Faktor beschriebenen Eigenschaften. Die Entdeckung von XErp1 und seine Regulierung durch die Kinase Plk1 haben die Martinsrieder Wissenschaftler bereits im Februar 2005 in der renommierten Zeitschrift Genes & Development publiziert.

In der neuesten Ausgabe von Nature haben die Nachwuchswissenschaftler nun weitere Details zur Steuerung des zytostatischen Faktors veröffentlicht. Seit 20 Jahren wissen Zellbiologen, dass Kalzium-Ionen einen wichtigen Einfluss auf die "Erweckung" der Eizellen aus ihrem Ruhezustand haben. Mit der Befruchtung der Eizelle werden die Ionen in größeren Mengen freigesetzt. Aus früheren Studien ist bekannt, dass ein Protein (CaMKII) an der Kalzium-Regulation in der Zelle beteiligt ist. Es handelt sich ebenfalls um eine Kinase, also ein Enzym, das durch die Übertragung von Phosphatgruppen an Signalproteine deren Aktivität steuert.

Nadine Rauh und Andreas Schmidt haben untersucht, ob und wie diese Kinase mit dem von ihnen entdeckten Faktor XErp1 in Wechselwirkung tritt. Dazu veränderten sie die Zellen, indem sie die Bindungsmöglichkeiten für Kalzium ausschalteten. Entsprechend verharrten die Eizellen auch nach der Befruchtung und trotz erhöhten Kalziumspiegels weiterhin in ihrem Ruhezustand. Die Versuche der Zellbiologen offenbarten ein komplexes Wechselspiel zwischen der Kinase CaMKII, den Kalzium-Ionen und dem Signalfaktor XErp1: Ein hoher Kalzium-Spiegel führt zur Aktivierung der Kinase; diese wiederum deaktiviert den Faktor XErp1. Dabei wird XErp1 so modifiziert, dass er von der zellulären Abbaumaschinerie erkannt und beseitigt werden kann. Damit wird quasi die "Pause"-Schaltung (XErp1) aufgehoben und der weitere Ablauf des Zellteilungszyklus freigegeben.

"Die Regulation durch die erhöhte Kalzium-Konzentration ist damit nun ganz leicht zu erklären. Da der von uns entdeckte und beschriebene Faktor XErp1 genau die Funktion eines lange gesuchten zytostatischen Faktors hat, gehen wir davon aus, dass er die zentrale Rolle bei der Arretierung der Eizellen in ihrem Ruhezustand bis zur Befruchtung spielt", so Thomas Mayer. "Unsere Ergebnisse zeigen erneut, dass die Natur bewährte Signalfunktionen miteinander kombiniert. Das komplexe Zusammenspiel der molekularen Faktoren stellt sicher, dass die Eier zeitlich abgestimmt mit der Befruchtung ihre Reduktionsteilung vollenden", so der Gruppenleiter. "Diese Forschungsergebnisse könnten in Zukunft auch Erklärungen und Therapie-Ansätze bei Unfruchtbarkeit eröffnen, die auf der mangelnden Bildung von Geschlechtszellen beruhen."

Eva-Maria Diehl | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.biochem.mpg.de
http://www.mpg.de

Weitere Berichte zu: Befruchtung Chromosomensatz Eizelle Gen Kinase XErp1 Zelle Zellteilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie