Der Ursprung embryonaler Stammzellen

Berliner Wissenschaftler identifizieren Gene, die für erste Schritte in der Entwicklung des Menschen verantwortlich sind

Wissenschaftler knüpfen große Erwartungen an den Einsatz embryonaler Stammzellen. Ihre Handhabung und insbesondere eine gezielte Differenzierung zu verschiedenen Zelltypen ist jedoch noch mit großen Schwierigkeiten verbunden. Forscher des Berliner Max-Planck-Instituts für molekulare Genetik, der Universität Leeds in Großbritannien und der Cornell-Universität in New York haben jetzt die ersten Gene identifiziert, welche die Steuerung der ersten unterschiedlichen Gewebearten beim Menschen übernehmen. In der Zeitschrift Stem Cells beschreiben sie, dass insbesondere die Gene OCT4, NANOG und CDX2 für Entstehung und Erhalt von innerer Zellmasse und Trophektoderm im Rahmen der Embryonalentwicklung verantwortlich sind. Ihre Ergebnisse sind von großer Bedeutung für Entwicklung einer gezielten Zellproduktion aus embryonalen Stammzellen (Stem Cells Express; doi:10.1634/stemcells. 2005-0113, epub ahead of print August 4, 2005).

Die Entwicklung des Menschen beginnt mit Teilungen der befruchteten Eizelle zu einem zunächst ungeordneten Zellhaufen, der Morula. Bereits in diesem Stadium beginnt die erste gerichtete Spezialisierung – Wissenschaftler sprechen von Differenzierung – der Zellen. Sie entwickeln sich zur Blastozyste, die aus innerer Zellmasse und einer äußeren Zellschicht besteht. Aus der inneren Zellmasse entsteht der eigentliche Fötus, während die äußere Zellschicht, das Trophektoderm, die embryonalen Hilfsorgane (Plazenta und Eihäute) ausbildet. Die Zellen der Blastozyste sind pluripotent, das bedeutet, sie sind in der Lage, unterschiedliche Zellarten auszubilden. Aus den Zellen des Trophektoderms können Stammzellen z.B. zur Differenzierung in Plazentagewebe entstehen, während sich embryonale Stammzellen von den Zellen der inneren Zellmasse ableiten. Diese können sich zu jedem Zelltyp eines erwachsenen Organismus entwickeln. Ihre Haltung und insbesondere die gerichtete Differenzierung stellen Forscher jedoch noch vor große Probleme.

Wissenschaftlern um Dr. James Adjaye vom Max-Planck-Institut für molekulare Genetik in Berlin ist es jetzt gelungen, Gene zu identifizieren, die für die Entwicklung und den Erhalt von innerer Zellmasse und Trophektoderm verantwortlich sind. Erstmalig wurden
dabei die beiden bereits in der Blastozyste vorhandenen Gewebe voneinander separiert und einer umfassenden Genexpressionsanalyse unterzogen. Durch den Vergleich der aktiven Gene von innerer Zellmasse und Trophektoderm konnten die Forscher nach-weisen, dass ein ganzes Spektrum von Signalwegen für die Entstehung und den Erhalt der beiden Gewebe verantwortlich ist. Für die Entwicklung der inneren Zellmasse sind dabei die Gene OCT4 und NANOG von besonderer Bedeutung; für die Entstehung des Trophektoderms spielt vor allem das Gen CDX2 eine herausragende Rolle. Die in der renommierten Fachzeitschrift Stem Cells veröffentlichten Ergebnisse stellen die ersten Erkenntnisse über die genetischen Regulationsmechanismen der frühen Embryonal-entwicklung beim Menschen überhaupt dar. Gleichzeitig ist die Arbeit von großer Bedeutung für die Forschung an embryonalen Stammzellen, da sie einen weiteren Schritt auf dem Weg zur Züchtung und gesteuerten Differenzierung dieser Zellen zu anderen Zellarten darstellt. Im nächsten Schritt wollen die Forscher die Funktion der identi-fizierten Markergene für die Aufrechterhaltung der Pluripotenz bzw. die Differenzierung in bestimmte Zelltypen untersuchen.

Media Contact

Dr. Patricia Beziat Max-Planck-Institut

Weitere Informationen:

http://www.molgen.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer