Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

CUSTOM COATINGS

04.09.2001


Our wide range of nanocoatings is not only available for SPR sensordiscs and ASI sensorchips but can be applied to other substrates as well. A flexible surface modification process allows the derivatization of many other materials with exactly defined biocoatings - such as planar monolayers or three-dimensional hydrogels with thicknesses ranging from a few nm up to one µm. You can choose from a great variety of coating materials and chemical functionalities from which a large part is listed in the sensorchip section. In addition to that, we are able to coat other substrates with different substances according to your specifications.


A selection of coatable substrate materials is listed below:

 

Inorganic Dielectrica

Metals and Alloys

Polymers

 

Silicate-based glasses

Noble metals

Polystyrenes

 

Glass-ceramics

Transition metals of IUPAC groups 4 - 11

Polycarbonates

 

Oxide ceramics

Cermets

Polymethacrylates

 

Diamond

Silicon

Polyesters

 

Quartz

Graphite

Polyethylenes

 

The above-mentioned nanomodifications have a great variety of applications to control surface properties of bulk materials. Some examples are:

  • Bioinertization
    Surgical and blood processing biomedical devices and implants coated with polysaccharide or polyethyleneglycol layers show a greatly enhanced biocompatibility. Implant rejection and thrombosis can be reduced immensely or even be eliminated. As our bioinert nanolayers stabilize surfaces again protein adsorption, they can be applied to good effect to bioanalytical devices where the suppression of nonspecific interactions is one of the major bottlenecks. We are able to coat ELISA plates, biochip and sensor surfaces as well as the channels of miniaturized flow systems for lab-on-a-chip applications.

  • Biofunctionalization
    In addition to a simple bioinertization, we can integrate functional biomolecules into our coatings. To give an example, cell specific growth and adhesion factors can be immobilized. For one, such coatings might be used in vivo to trigger the growth of a specific tissue. For another, you can use them ex vivo to create biocompatible walls of cell culture containers.

  • Biomolecule immobilization
    Our polysaccharide nanolayers provide an excellent matrix for the covalent immobilization of proteins, peptides, nucleic acids and even small organic molecules. Using them, the immobilization capacity of surfaces is up to ten times higher than that of non-coated substrates. The immobilization process is very efficient and usually does not denaturate even sensitive biomolecules. Moreover, these surfaces are fully regenerable, i.e. it is possible to almost completely remove bound molecules which have interacted with the immobilized substance.

  • Coating of ophtalmic devices
    As our polysaccharide nanolayers behave like thin hydrogels, they are able to bind a considerable amount of water. They also have a lubricating effect caused by their high surface energy. Thus, they are ideally suited for the coating of contact lenses: not only do they prevent the lens surface from being spoilt by cell debris, cosmetics, dust and dirt, solvent vapors and chemicals. They also provide a continuous layer of tear fluid on the contact lens between the blinks of the eye. This layer lubricates the tissue/lens interface and thus prevents soreness of the eyes and unwanted movement of the contact lens. Thereby, the wearing comfort of coated contact lenses is much higher than that of untreated lenses.

  • Anti-fouling coatings
    Due to a high surface energy and an entropy-caused stabilizing effect of the hydrophilic polymer chains, our coatings prevent surfaces from adsorbing dirt from aequous solutions. Contaminations can be easily washed away with water - usually without using detergents.

  • Anti-condensation
    coatings The hydrogel layers’ hydrophilicity and their ability to retain water cause very low contact angles - usually between 0° and 10°. Water condensing on surfaces that are coated forms no droplets any more but a homogeneous film which does not affect the material’s optical quality. That is why our anti-condensation coatings are well suited for optical devices which are operated in wet and humid environments and under conditions with drastic temperature changes.

  • Lubricating coatings
    Lubrication - especially that of miniaturized systems which are to function in an aequous environment - is often a difficult task. Coating parts of such systems with nano-sized hydrogel layers drastically reduces friction and also prevents the adsorption of dirt and biological contaminants. For instance, lubricating coatings can be applied to instruments for minimal invasive surgery and to microsystems for bioanalytical purposes.


In a nutshell, the examples given above illustrate a selection of possible uses. Contact us for more information. We are happy to learn about new applications and to discuss how we can use our know-how in order to optimize the quality of your products

xantec | xantec

Weitere Berichte zu: Coatings

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie