Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

CUSTOM COATINGS

04.09.2001


Our wide range of nanocoatings is not only available for SPR sensordiscs and ASI sensorchips but can be applied to other substrates as well. A flexible surface modification process allows the derivatization of many other materials with exactly defined biocoatings - such as planar monolayers or three-dimensional hydrogels with thicknesses ranging from a few nm up to one µm. You can choose from a great variety of coating materials and chemical functionalities from which a large part is listed in the sensorchip section. In addition to that, we are able to coat other substrates with different substances according to your specifications.


A selection of coatable substrate materials is listed below:

 

Inorganic Dielectrica

Metals and Alloys

Polymers

 

Silicate-based glasses

Noble metals

Polystyrenes

 

Glass-ceramics

Transition metals of IUPAC groups 4 - 11

Polycarbonates

 

Oxide ceramics

Cermets

Polymethacrylates

 

Diamond

Silicon

Polyesters

 

Quartz

Graphite

Polyethylenes

 

The above-mentioned nanomodifications have a great variety of applications to control surface properties of bulk materials. Some examples are:

  • Bioinertization
    Surgical and blood processing biomedical devices and implants coated with polysaccharide or polyethyleneglycol layers show a greatly enhanced biocompatibility. Implant rejection and thrombosis can be reduced immensely or even be eliminated. As our bioinert nanolayers stabilize surfaces again protein adsorption, they can be applied to good effect to bioanalytical devices where the suppression of nonspecific interactions is one of the major bottlenecks. We are able to coat ELISA plates, biochip and sensor surfaces as well as the channels of miniaturized flow systems for lab-on-a-chip applications.

  • Biofunctionalization
    In addition to a simple bioinertization, we can integrate functional biomolecules into our coatings. To give an example, cell specific growth and adhesion factors can be immobilized. For one, such coatings might be used in vivo to trigger the growth of a specific tissue. For another, you can use them ex vivo to create biocompatible walls of cell culture containers.

  • Biomolecule immobilization
    Our polysaccharide nanolayers provide an excellent matrix for the covalent immobilization of proteins, peptides, nucleic acids and even small organic molecules. Using them, the immobilization capacity of surfaces is up to ten times higher than that of non-coated substrates. The immobilization process is very efficient and usually does not denaturate even sensitive biomolecules. Moreover, these surfaces are fully regenerable, i.e. it is possible to almost completely remove bound molecules which have interacted with the immobilized substance.

  • Coating of ophtalmic devices
    As our polysaccharide nanolayers behave like thin hydrogels, they are able to bind a considerable amount of water. They also have a lubricating effect caused by their high surface energy. Thus, they are ideally suited for the coating of contact lenses: not only do they prevent the lens surface from being spoilt by cell debris, cosmetics, dust and dirt, solvent vapors and chemicals. They also provide a continuous layer of tear fluid on the contact lens between the blinks of the eye. This layer lubricates the tissue/lens interface and thus prevents soreness of the eyes and unwanted movement of the contact lens. Thereby, the wearing comfort of coated contact lenses is much higher than that of untreated lenses.

  • Anti-fouling coatings
    Due to a high surface energy and an entropy-caused stabilizing effect of the hydrophilic polymer chains, our coatings prevent surfaces from adsorbing dirt from aequous solutions. Contaminations can be easily washed away with water - usually without using detergents.

  • Anti-condensation
    coatings The hydrogel layers’ hydrophilicity and their ability to retain water cause very low contact angles - usually between 0° and 10°. Water condensing on surfaces that are coated forms no droplets any more but a homogeneous film which does not affect the material’s optical quality. That is why our anti-condensation coatings are well suited for optical devices which are operated in wet and humid environments and under conditions with drastic temperature changes.

  • Lubricating coatings
    Lubrication - especially that of miniaturized systems which are to function in an aequous environment - is often a difficult task. Coating parts of such systems with nano-sized hydrogel layers drastically reduces friction and also prevents the adsorption of dirt and biological contaminants. For instance, lubricating coatings can be applied to instruments for minimal invasive surgery and to microsystems for bioanalytical purposes.


In a nutshell, the examples given above illustrate a selection of possible uses. Contact us for more information. We are happy to learn about new applications and to discuss how we can use our know-how in order to optimize the quality of your products

xantec | xantec

Weitere Berichte zu: Coatings

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften