Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entwicklungsgenetik: Als die Zellen laufen lernten

23.08.2005


Um Krankheiten wie Parkinson, die auf Veränderungen im Gehirn beruhen, oder auch Hirntumoren zielgerichtet behandeln zu können, muss man die Komplexität des Gehirns möglichst gut verstehen und wissen, wie sie zustande kommt. Wissenschaftler um Dr. Reinhard Köster am Institut für Entwicklungsgenetik des GSF-Forschungszentrums für Umwelt und Gesundheit in Neuherberg untersuchen, wie sich zunächst einfache Nervenzell-Vorläufer zu dem dicht geknüpften, hoch organisierten Netzwerk des Gehirns zusammenfinden. Sie hoffen, dass sich die Arbeiten ihrer Biofuture-Gruppe Zebrafisch-Neuroimaging als anwendbar auf den Menschen erweisen und langfristig neue Therapien ermöglichen.
Zu Beginn der Embryonalentwicklung ist das Gehirn sehr einfach angelegt, mit klar definierten Regionen - Regionen, in denen Nervenzellen geboren werden, und solchen, in denen sie reifen und ihre endgültige Funktion übernehmen. Die jungen Zellen müssen also auf Wanderschaft gehen. Modernste Verfahren der Mikroskopie und der Kontrastmittelchemie - voll motorisierte Mikroskope etwa, Laserabtastverfahren und genetisch kodierte Farbstoffe - erlauben es, sie dabei detailliert zu beobachten. Die Entwicklungsneurobiologen der GSF kombinieren die so genannte konfokale Laserscanning-Mikroskopie mit genetisch kodierten Fluoreszenzfarbstoffen, um das Entwicklungsprogramm von entstehenden Nervenzellen direkt im Hirn mittels Zeitrafferverfahren zu verfolgen. Insbesondere interessiert sie, wie junge Nervenzellen vom Entstehungs- zum Funktionsort wandern, und welche Gene diese Wanderung steuern. Solche Prozesse zu verstehen, ist von entscheidender Bedeutung, da eine fehlerhafte Wanderung zu schweren neurologischen Defekten führt. Andererseits eröffnet die Möglichkeit, hier Einfluss zu nehmen, Ansätze für neuartige Therapien: Man könnte neuronale Stammzellen in schadhafte Hirnregionen lenken und so Nervenzellen ersetzen, die etwa durch Parkinson oder Schlaganfall verloren gegangen sind.



Hoch auflösende mikroskopische Verfahren setzen jedoch einiges voraus. Embryonen, in denen man wandernde Nervenzellen beobachten will, müssen nahezu durchsichtig, möglichst klein und leicht manipulierbar und dennoch in ihrer Entwicklung dem Menschen ähnlich sein; zudem sollten sie sich schnell und außerhalb des Mutterleibs entwickeln. Ideale Objekte sind Embryonen von Zebrafischen: Zebrafische sind Wirbeltiere wie der Mensch, ihre Embryonen wachsen in Eiern außerhalb des Mutterleibs heran und sind transparent. Überdies entwickeln sie sich sehr rasch, so dass Filmaufnahmen von nur wenigen Tagen ausreichen, sämtliche Prozesse der Hirnentwicklung zu verfolgen, die sich beim Menschen über ein Jahr hinziehen.

Die GSF-Forscher konzentrieren sich auf wandernde Nervenzellen im Kleinhirn. Dieser Hirnteil kontrolliert Gleichgewicht, Körperhaltung, komplexe Bewegungsabläufe und vermutlich auch motorisches Lernen wie das Spielen eines Instruments. Weil er das Kleinhirn sich im Laufe der Evolution nur wenig verändert hat, besteht die Hoffnung, dass sich am Zebrafisch gewonnene Ergebnisse auf den Menschen übertragen lassen. Mit mikroskopischen Zeitrafferaufnahmen konnten die Wissenschaftler die Pfade aufklären, auf denen sich die Nervenzellen bewegen. Dabei zeigt sich, dass in derselben Region entstandene Zellen sehr unterschiedliche Wanderrichtungen und damit Entwicklungsschicksale nehmen können, vermutlich abhängig vom Zeitpunkt ihrer Geburt.

Der Pfad der meisten Zellen lässt sich in mehrere Teilstrecken unterteilen. Nervenzellvorläufer, die in der Region der "Rautenlippe" entstehen, verlassen diese in Richtung Mittelhirn und wandern in einer ersten Phase bis zur Grenze zwischen Mittel- und Hinterhirn. Dort angekommen, ändern sie ihre Richtung und wandern in der folgenden zweiten Phase an dieser Grenze entlang. Haben sie den Hirnstamm erreicht, kommen sie zur Ruhe und reifen zu voll ausgebildeten Nervenzellen heran. Auch ihre Fähigkeiten und das Verhalten sind in beiden Phasen unterschiedlich: Während sich die Zellen in der ersten Phase noch teilen, um weitere Vorläufer von Nervenzellen zu bilden, sind sie in der zweiten Phase dazu offenbar nicht mehr fähig. Stattdessen beginnen sie einen langen Fortsatz auszubilden, der sie später mit Nervenzellen in anderen Hirnregionen verknüpft.

Momentan interessieren sich die Wissenschaftler vor allem für die genetischen Wechselwirkungen während der ersten Phase, die die Reifung der Nervenzellen steuern. Ein erstes Kandidatengen haben sie bereits isoliert. Außerdem legen sie besonderes Augenmerk auf die molekularen Vorgänge, die den Eintritt in die zweite Phase auslösen. Erste Analysen ergaben, dass der Übergang von Phase 1 zu Phase 2 über die Gene für einen Liganden und den dazu passenden Rezeptor gesteuert werden könnte. Das für den Liganden kodierende Gen ist im Zielgebiet der Zellen im Hirnstamm aktiv, das Gen für den Rezeptor in den wandernden Zellen. Dieses wird jedoch erst dann aktiviert, wenn die Zellen die Grenze zwischen Mittel- und Hinterhirn erreicht haben. Erst von diesem Zeitpunkt an sind sie in der Lage, den Liganden zu erkennen und auf ihn zu reagieren. Möglicherweise bedingt diese zeitliche Regulation den Richtungswechsel zwischen beiden Phasen.

Der Übergang von Phase 1 zu Phase 2 könnte bestimmend sein dafür, wie lange eine Zelle in Phase 1 bleibt, wie oft sie sich also teilt. Eventuell führt ein zu langer Aufenthalt zur Bildung eines Tumors. Angesichts der Tatsache, dass Kleinhirntumoren aus eben diesen wandernden Nervenvorläuferzellen die häufigsten Hirntumoren bei Kindern sind, ist es um so wichtiger, das Zusammenspiel von Zellteilung und -wanderung aufzuklären. Man kann auf Möglichkeiten hoffen, eine Tumorbildung zu verhindern oder wenigstens einzuschränken. Denkbar wäre zum Beispiel, Zellen zum Übergang in die zweite Phase zu zwingen, in der sie nicht mehr teilungsfähig sind. Zukünftige genetische Experimente sollen hier Klarheit bringen. Auch für Regenerationsprozesse hat die Zellwanderung zentrale Bedeutung. Studien, in denen das Kleinhirn von Zebrafischembryonen entfernt wurde, belegen eine erstaunliche Regenerationsfähigkeit dieses Hirnteils.

Heinz-Jörg Haury | idw
Weitere Informationen:
http://www.gsf.de

Weitere Berichte zu: Embryonen Gen Kleinhirn Liganden Nervenzelle Zebrafisch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht
25.04.2018 | Universitätsklinikum Heidelberg

nachricht Demographie beeinflusst Brutfürsorge bei Regenpfeifern
25.04.2018 | Max-Planck-Institut für Ornithologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics