Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entwicklungsgenetik: Als die Zellen laufen lernten

23.08.2005


Um Krankheiten wie Parkinson, die auf Veränderungen im Gehirn beruhen, oder auch Hirntumoren zielgerichtet behandeln zu können, muss man die Komplexität des Gehirns möglichst gut verstehen und wissen, wie sie zustande kommt. Wissenschaftler um Dr. Reinhard Köster am Institut für Entwicklungsgenetik des GSF-Forschungszentrums für Umwelt und Gesundheit in Neuherberg untersuchen, wie sich zunächst einfache Nervenzell-Vorläufer zu dem dicht geknüpften, hoch organisierten Netzwerk des Gehirns zusammenfinden. Sie hoffen, dass sich die Arbeiten ihrer Biofuture-Gruppe Zebrafisch-Neuroimaging als anwendbar auf den Menschen erweisen und langfristig neue Therapien ermöglichen.
Zu Beginn der Embryonalentwicklung ist das Gehirn sehr einfach angelegt, mit klar definierten Regionen - Regionen, in denen Nervenzellen geboren werden, und solchen, in denen sie reifen und ihre endgültige Funktion übernehmen. Die jungen Zellen müssen also auf Wanderschaft gehen. Modernste Verfahren der Mikroskopie und der Kontrastmittelchemie - voll motorisierte Mikroskope etwa, Laserabtastverfahren und genetisch kodierte Farbstoffe - erlauben es, sie dabei detailliert zu beobachten. Die Entwicklungsneurobiologen der GSF kombinieren die so genannte konfokale Laserscanning-Mikroskopie mit genetisch kodierten Fluoreszenzfarbstoffen, um das Entwicklungsprogramm von entstehenden Nervenzellen direkt im Hirn mittels Zeitrafferverfahren zu verfolgen. Insbesondere interessiert sie, wie junge Nervenzellen vom Entstehungs- zum Funktionsort wandern, und welche Gene diese Wanderung steuern. Solche Prozesse zu verstehen, ist von entscheidender Bedeutung, da eine fehlerhafte Wanderung zu schweren neurologischen Defekten führt. Andererseits eröffnet die Möglichkeit, hier Einfluss zu nehmen, Ansätze für neuartige Therapien: Man könnte neuronale Stammzellen in schadhafte Hirnregionen lenken und so Nervenzellen ersetzen, die etwa durch Parkinson oder Schlaganfall verloren gegangen sind.



Hoch auflösende mikroskopische Verfahren setzen jedoch einiges voraus. Embryonen, in denen man wandernde Nervenzellen beobachten will, müssen nahezu durchsichtig, möglichst klein und leicht manipulierbar und dennoch in ihrer Entwicklung dem Menschen ähnlich sein; zudem sollten sie sich schnell und außerhalb des Mutterleibs entwickeln. Ideale Objekte sind Embryonen von Zebrafischen: Zebrafische sind Wirbeltiere wie der Mensch, ihre Embryonen wachsen in Eiern außerhalb des Mutterleibs heran und sind transparent. Überdies entwickeln sie sich sehr rasch, so dass Filmaufnahmen von nur wenigen Tagen ausreichen, sämtliche Prozesse der Hirnentwicklung zu verfolgen, die sich beim Menschen über ein Jahr hinziehen.

Die GSF-Forscher konzentrieren sich auf wandernde Nervenzellen im Kleinhirn. Dieser Hirnteil kontrolliert Gleichgewicht, Körperhaltung, komplexe Bewegungsabläufe und vermutlich auch motorisches Lernen wie das Spielen eines Instruments. Weil er das Kleinhirn sich im Laufe der Evolution nur wenig verändert hat, besteht die Hoffnung, dass sich am Zebrafisch gewonnene Ergebnisse auf den Menschen übertragen lassen. Mit mikroskopischen Zeitrafferaufnahmen konnten die Wissenschaftler die Pfade aufklären, auf denen sich die Nervenzellen bewegen. Dabei zeigt sich, dass in derselben Region entstandene Zellen sehr unterschiedliche Wanderrichtungen und damit Entwicklungsschicksale nehmen können, vermutlich abhängig vom Zeitpunkt ihrer Geburt.

Der Pfad der meisten Zellen lässt sich in mehrere Teilstrecken unterteilen. Nervenzellvorläufer, die in der Region der "Rautenlippe" entstehen, verlassen diese in Richtung Mittelhirn und wandern in einer ersten Phase bis zur Grenze zwischen Mittel- und Hinterhirn. Dort angekommen, ändern sie ihre Richtung und wandern in der folgenden zweiten Phase an dieser Grenze entlang. Haben sie den Hirnstamm erreicht, kommen sie zur Ruhe und reifen zu voll ausgebildeten Nervenzellen heran. Auch ihre Fähigkeiten und das Verhalten sind in beiden Phasen unterschiedlich: Während sich die Zellen in der ersten Phase noch teilen, um weitere Vorläufer von Nervenzellen zu bilden, sind sie in der zweiten Phase dazu offenbar nicht mehr fähig. Stattdessen beginnen sie einen langen Fortsatz auszubilden, der sie später mit Nervenzellen in anderen Hirnregionen verknüpft.

Momentan interessieren sich die Wissenschaftler vor allem für die genetischen Wechselwirkungen während der ersten Phase, die die Reifung der Nervenzellen steuern. Ein erstes Kandidatengen haben sie bereits isoliert. Außerdem legen sie besonderes Augenmerk auf die molekularen Vorgänge, die den Eintritt in die zweite Phase auslösen. Erste Analysen ergaben, dass der Übergang von Phase 1 zu Phase 2 über die Gene für einen Liganden und den dazu passenden Rezeptor gesteuert werden könnte. Das für den Liganden kodierende Gen ist im Zielgebiet der Zellen im Hirnstamm aktiv, das Gen für den Rezeptor in den wandernden Zellen. Dieses wird jedoch erst dann aktiviert, wenn die Zellen die Grenze zwischen Mittel- und Hinterhirn erreicht haben. Erst von diesem Zeitpunkt an sind sie in der Lage, den Liganden zu erkennen und auf ihn zu reagieren. Möglicherweise bedingt diese zeitliche Regulation den Richtungswechsel zwischen beiden Phasen.

Der Übergang von Phase 1 zu Phase 2 könnte bestimmend sein dafür, wie lange eine Zelle in Phase 1 bleibt, wie oft sie sich also teilt. Eventuell führt ein zu langer Aufenthalt zur Bildung eines Tumors. Angesichts der Tatsache, dass Kleinhirntumoren aus eben diesen wandernden Nervenvorläuferzellen die häufigsten Hirntumoren bei Kindern sind, ist es um so wichtiger, das Zusammenspiel von Zellteilung und -wanderung aufzuklären. Man kann auf Möglichkeiten hoffen, eine Tumorbildung zu verhindern oder wenigstens einzuschränken. Denkbar wäre zum Beispiel, Zellen zum Übergang in die zweite Phase zu zwingen, in der sie nicht mehr teilungsfähig sind. Zukünftige genetische Experimente sollen hier Klarheit bringen. Auch für Regenerationsprozesse hat die Zellwanderung zentrale Bedeutung. Studien, in denen das Kleinhirn von Zebrafischembryonen entfernt wurde, belegen eine erstaunliche Regenerationsfähigkeit dieses Hirnteils.

Heinz-Jörg Haury | idw
Weitere Informationen:
http://www.gsf.de

Weitere Berichte zu: Embryonen Gen Kleinhirn Liganden Nervenzelle Zebrafisch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden
06.12.2016 | Universität Osnabrück

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften

Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden

06.12.2016 | Biowissenschaften Chemie

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie