Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entwicklungsgenetik: Als die Zellen laufen lernten

23.08.2005


Um Krankheiten wie Parkinson, die auf Veränderungen im Gehirn beruhen, oder auch Hirntumoren zielgerichtet behandeln zu können, muss man die Komplexität des Gehirns möglichst gut verstehen und wissen, wie sie zustande kommt. Wissenschaftler um Dr. Reinhard Köster am Institut für Entwicklungsgenetik des GSF-Forschungszentrums für Umwelt und Gesundheit in Neuherberg untersuchen, wie sich zunächst einfache Nervenzell-Vorläufer zu dem dicht geknüpften, hoch organisierten Netzwerk des Gehirns zusammenfinden. Sie hoffen, dass sich die Arbeiten ihrer Biofuture-Gruppe Zebrafisch-Neuroimaging als anwendbar auf den Menschen erweisen und langfristig neue Therapien ermöglichen.
Zu Beginn der Embryonalentwicklung ist das Gehirn sehr einfach angelegt, mit klar definierten Regionen - Regionen, in denen Nervenzellen geboren werden, und solchen, in denen sie reifen und ihre endgültige Funktion übernehmen. Die jungen Zellen müssen also auf Wanderschaft gehen. Modernste Verfahren der Mikroskopie und der Kontrastmittelchemie - voll motorisierte Mikroskope etwa, Laserabtastverfahren und genetisch kodierte Farbstoffe - erlauben es, sie dabei detailliert zu beobachten. Die Entwicklungsneurobiologen der GSF kombinieren die so genannte konfokale Laserscanning-Mikroskopie mit genetisch kodierten Fluoreszenzfarbstoffen, um das Entwicklungsprogramm von entstehenden Nervenzellen direkt im Hirn mittels Zeitrafferverfahren zu verfolgen. Insbesondere interessiert sie, wie junge Nervenzellen vom Entstehungs- zum Funktionsort wandern, und welche Gene diese Wanderung steuern. Solche Prozesse zu verstehen, ist von entscheidender Bedeutung, da eine fehlerhafte Wanderung zu schweren neurologischen Defekten führt. Andererseits eröffnet die Möglichkeit, hier Einfluss zu nehmen, Ansätze für neuartige Therapien: Man könnte neuronale Stammzellen in schadhafte Hirnregionen lenken und so Nervenzellen ersetzen, die etwa durch Parkinson oder Schlaganfall verloren gegangen sind.



Hoch auflösende mikroskopische Verfahren setzen jedoch einiges voraus. Embryonen, in denen man wandernde Nervenzellen beobachten will, müssen nahezu durchsichtig, möglichst klein und leicht manipulierbar und dennoch in ihrer Entwicklung dem Menschen ähnlich sein; zudem sollten sie sich schnell und außerhalb des Mutterleibs entwickeln. Ideale Objekte sind Embryonen von Zebrafischen: Zebrafische sind Wirbeltiere wie der Mensch, ihre Embryonen wachsen in Eiern außerhalb des Mutterleibs heran und sind transparent. Überdies entwickeln sie sich sehr rasch, so dass Filmaufnahmen von nur wenigen Tagen ausreichen, sämtliche Prozesse der Hirnentwicklung zu verfolgen, die sich beim Menschen über ein Jahr hinziehen.

Die GSF-Forscher konzentrieren sich auf wandernde Nervenzellen im Kleinhirn. Dieser Hirnteil kontrolliert Gleichgewicht, Körperhaltung, komplexe Bewegungsabläufe und vermutlich auch motorisches Lernen wie das Spielen eines Instruments. Weil er das Kleinhirn sich im Laufe der Evolution nur wenig verändert hat, besteht die Hoffnung, dass sich am Zebrafisch gewonnene Ergebnisse auf den Menschen übertragen lassen. Mit mikroskopischen Zeitrafferaufnahmen konnten die Wissenschaftler die Pfade aufklären, auf denen sich die Nervenzellen bewegen. Dabei zeigt sich, dass in derselben Region entstandene Zellen sehr unterschiedliche Wanderrichtungen und damit Entwicklungsschicksale nehmen können, vermutlich abhängig vom Zeitpunkt ihrer Geburt.

Der Pfad der meisten Zellen lässt sich in mehrere Teilstrecken unterteilen. Nervenzellvorläufer, die in der Region der "Rautenlippe" entstehen, verlassen diese in Richtung Mittelhirn und wandern in einer ersten Phase bis zur Grenze zwischen Mittel- und Hinterhirn. Dort angekommen, ändern sie ihre Richtung und wandern in der folgenden zweiten Phase an dieser Grenze entlang. Haben sie den Hirnstamm erreicht, kommen sie zur Ruhe und reifen zu voll ausgebildeten Nervenzellen heran. Auch ihre Fähigkeiten und das Verhalten sind in beiden Phasen unterschiedlich: Während sich die Zellen in der ersten Phase noch teilen, um weitere Vorläufer von Nervenzellen zu bilden, sind sie in der zweiten Phase dazu offenbar nicht mehr fähig. Stattdessen beginnen sie einen langen Fortsatz auszubilden, der sie später mit Nervenzellen in anderen Hirnregionen verknüpft.

Momentan interessieren sich die Wissenschaftler vor allem für die genetischen Wechselwirkungen während der ersten Phase, die die Reifung der Nervenzellen steuern. Ein erstes Kandidatengen haben sie bereits isoliert. Außerdem legen sie besonderes Augenmerk auf die molekularen Vorgänge, die den Eintritt in die zweite Phase auslösen. Erste Analysen ergaben, dass der Übergang von Phase 1 zu Phase 2 über die Gene für einen Liganden und den dazu passenden Rezeptor gesteuert werden könnte. Das für den Liganden kodierende Gen ist im Zielgebiet der Zellen im Hirnstamm aktiv, das Gen für den Rezeptor in den wandernden Zellen. Dieses wird jedoch erst dann aktiviert, wenn die Zellen die Grenze zwischen Mittel- und Hinterhirn erreicht haben. Erst von diesem Zeitpunkt an sind sie in der Lage, den Liganden zu erkennen und auf ihn zu reagieren. Möglicherweise bedingt diese zeitliche Regulation den Richtungswechsel zwischen beiden Phasen.

Der Übergang von Phase 1 zu Phase 2 könnte bestimmend sein dafür, wie lange eine Zelle in Phase 1 bleibt, wie oft sie sich also teilt. Eventuell führt ein zu langer Aufenthalt zur Bildung eines Tumors. Angesichts der Tatsache, dass Kleinhirntumoren aus eben diesen wandernden Nervenvorläuferzellen die häufigsten Hirntumoren bei Kindern sind, ist es um so wichtiger, das Zusammenspiel von Zellteilung und -wanderung aufzuklären. Man kann auf Möglichkeiten hoffen, eine Tumorbildung zu verhindern oder wenigstens einzuschränken. Denkbar wäre zum Beispiel, Zellen zum Übergang in die zweite Phase zu zwingen, in der sie nicht mehr teilungsfähig sind. Zukünftige genetische Experimente sollen hier Klarheit bringen. Auch für Regenerationsprozesse hat die Zellwanderung zentrale Bedeutung. Studien, in denen das Kleinhirn von Zebrafischembryonen entfernt wurde, belegen eine erstaunliche Regenerationsfähigkeit dieses Hirnteils.

Heinz-Jörg Haury | idw
Weitere Informationen:
http://www.gsf.de

Weitere Berichte zu: Embryonen Gen Kleinhirn Liganden Nervenzelle Zebrafisch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ionen gegen Herzrhythmusstörungen – Nicht-invasive Alternative zu Katheter-Eingriff
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Leibwächter im Darm mit chemischer Waffe
20.01.2017 | Max-Planck-Institut für chemische Ökologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise