Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reaktionsfronten auf atomarer Skala sichtbar gemacht

03.09.2001

Forscher am Fritz-Haber-Institut entdecken: Bisherige Modelle molekularer Prozesse müssen korrigiert werden

Wissenschaftler des Berliner Fritz-Haber-Instituts der Max-Planck-Gesellschaft haben erstmals die atomaren Vorgänge sichtbar gemacht, die auf der Oberfläche eines Katalysators so genannte chemische Reaktionsfronten entstehen lassen (Science, 31. August 2001). Dieser Erfolg gelang dem Forscherteam um Christian Sachs und Joost Wintterlin aus der von Prof. Gerhard Ertl geleiteten Abteilung "Physikalische Chemie".

Gewöhnlich laufen chemische Prozesse gleichmäßig ab, das heißt: In dem gesamten Raum, in dem sie stattfinden, ist die Stoffumwandlung etwa im selben Moment beendet. Manche Reaktionen nehmen jedoch einen anderen Verlauf: Sie "zünden" an einer Stelle und breiten sich dann frontartig aus. Solche Phänomene sind zwar schon länger aus der Chemie bekannt und lassen sich auch recht gut mit theoretischen Modellen erklären. Bisher wussten die Forscher allerdings nicht, ob die einfachen Vorstellungen, so genannte Reaktions-Diffusions-Modelle, die Vorgänge auch auf atomarer Ebene korrekt beschreiben.

Mithilfe eines Rastertunnelmikroskops haben Wissenschaftler des Fritz-Haber-Instituts die molekularen Prozesse in einer Reaktionsfront jetzt erstmals direkt sichtbar gemacht. Dabei stellte sich heraus, dass man die Konzepte einfacher Reaktions-Diffusions-Modelle nicht auf den kleinen Maßstab von Atomen und Molekülen übertragen kann. Vor allem müssen künftig die Wechselwirkungen zwischen den reagierenden Partnern berücksichtigt werden, damit man die Eigenschaften der Fronten - zum Beispiel ihre Geschwindigkeit - genau berechnen kann.

Frontartige Ausbreitungen sind nicht nur aus der Chemie, sondern auch aus anderen Bereichen der Natur und sogar bei sozialen Vorgängen bekannt: Waldbrände etwa zeigen ein ähnliches Verhalten. Weitere Beispiele sind die Pestepidemien im Mittelalter oder die Einführung des Ackerbaus in Europa in der Jungsteinzeit. Sie beginnen in einem lokal begrenzten Gebiet und breiten sich frontartig aus. Mathematisch lassen sich all diese Vorgänge ähnlich beschreiben. Bei chemischen Reaktionen, an denen meistens nur relativ einfach gebaute, einheitliche Moleküle beteiligt sind, scheinen die zugrunde liegenden Prozesse besonders leicht verständlich zu sein. Die Reaktion beginnt irgendwo und bildet lokal eine kleine Menge Reaktionsprodukt. Bei bestimmten chemischen Prozessen nimmt jedoch das entstehende Produkt selbst wieder an der Stoffumsetzung teil und beschleunigt sie dadurch. Einmal gestartet, wird der Ablauf daher immer schneller, und die Menge der erzeugten Substanz nimmt in diesem Bereich stark zu. Gleichzeitig beginnt das zunächst räumlich konzentrierte Produkt durch Diffusion auseinander zu laufen und sich in seiner Umgebung auszubreiten. Hier startet es erneut die Reaktion, die sich weiter fortsetzt. Diese Vorgänge wiederholen sich ständig - das entspricht der Ausbreitung einer Front. Die Geschwindigkeit, mit der sich die Front bewegt, kann dabei viel größer sein als die Diffusionsgeschwindigkeit. Mit einfachen theoretischen Modellen, die nur die Reaktion und die Diffusion berücksichtigen (daher der Name Reaktions-Diffusions-Modell) lässt sich dieses Verhalten im Prinzip erfassen. Dennoch gibt es Hinweise, dass diese Beschreibung zu einfach ist.

Wissenschaftler des Fritz-Haber-Instituts um Christian Sachs und Joost Wintterlin aus der Abteilung von Prof. Gerhard Ertl haben gefunden, dass bei der katalytischen Oxidation von Wasserstoff bei tiefen Temperaturen Fronten entstehen können. Die Reaktion zwischen Wasserstoff und Sauerstoff findet dabei auf der als Katalysator wirkenden Platinoberfläche statt; als Produkt entsteht Wasser. Die Messungen fanden im Ultrahochvakuum mit einem Rastertunnelmikroskop statt - ein Verfahren, das Abbildungen von Atomen und Molekülen auf Oberflächen liefert. Mit dieser Technik ist es jetzt gelungen, solche chemischen Reaktionsfronten sichtbar zu machen; bei diesen Reaktionen haben sie typische Breiten von 10 bis 100 Nanometern (= Millionstel Millimeter).

Die Berliner Forscher haben außerdem beobachtet, dass als Zwischenprodukt OH-Moleküle auf der Platinoberfläche entstehen, die sich dann mit Wasserstoffatomen zu Wasser (H2O) vereinen. Dieses Wasser reagiert aber weiter und setzt mit noch vorhandenen Sauerstoffatomen wieder OH frei. Dadurch wächst lokal die Menge an OH, sodass OH und in der Folge H2O immer schneller erzeugt werden. Wasser kann auf der Platinoberfläche diffundieren und diesen Prozess somit auch in der Umgebung auslösen. Als Ergebnis breitet sich eine Reaktionsfront aus, wobei das Zwischenprodukt OH sich in der Front anreichert.

Nachdem es nun gelungen ist, auf atomarer Skala die in den Fronten reagierenden Atome und Moleküle sichtbar zu machen, zeigen sich viel kompliziertere Prozesse, als die Reaktions-Diffusions-Modelle angenommen haben. Zwar reagieren und diffundieren die chemischen Partner tatsächlich - aber nicht unabhängig voneinander. Die OH- und H2O-Moleküle zeigen starke Wechselwirkungen, zum Beispiel bilden sich durch anziehende Kräfte zwischen den Teilchen kleine Inseln aus. Damit lässt sich erklären, warum die experimentell gemessenen Geschwindigkeiten und Profile der Fronten nicht mit den theoretisch vorhergesagten Werten übereinstimmen. Die Wissenschaftler hoffen nun, dass sich mit diesen Befunden bessere theoretische Modelle entwickeln lassen, die sich dann auch auf andere Beispiele dieses weit verbreiteten Phänomens übertragen lassen.

Viola Kirchner

Viola Kirchner | Presseinformation
Weitere Informationen:
http://www.mpg.de/index.html
http://www.fhi-berlin.mpg.de/

Weitere Berichte zu: Molekül Reaktions-Diffusions-Modell Reaktionsfront

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen
22.06.2017 | Heinrich-Heine-Universität Düsseldorf

nachricht Im Mikrokosmos wird es bunt: 124 Farben dank RGB-Technologie
22.06.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie

Innovative High Power LED Light Engine für den UV Bereich

22.06.2017 | Physik Astronomie

Wie Menschen Schäden an Gebäuden wahrnehmen

22.06.2017 | Architektur Bauwesen