Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reaktionsfronten auf atomarer Skala sichtbar gemacht

03.09.2001

Forscher am Fritz-Haber-Institut entdecken: Bisherige Modelle molekularer Prozesse müssen korrigiert werden

Wissenschaftler des Berliner Fritz-Haber-Instituts der Max-Planck-Gesellschaft haben erstmals die atomaren Vorgänge sichtbar gemacht, die auf der Oberfläche eines Katalysators so genannte chemische Reaktionsfronten entstehen lassen (Science, 31. August 2001). Dieser Erfolg gelang dem Forscherteam um Christian Sachs und Joost Wintterlin aus der von Prof. Gerhard Ertl geleiteten Abteilung "Physikalische Chemie".

Gewöhnlich laufen chemische Prozesse gleichmäßig ab, das heißt: In dem gesamten Raum, in dem sie stattfinden, ist die Stoffumwandlung etwa im selben Moment beendet. Manche Reaktionen nehmen jedoch einen anderen Verlauf: Sie "zünden" an einer Stelle und breiten sich dann frontartig aus. Solche Phänomene sind zwar schon länger aus der Chemie bekannt und lassen sich auch recht gut mit theoretischen Modellen erklären. Bisher wussten die Forscher allerdings nicht, ob die einfachen Vorstellungen, so genannte Reaktions-Diffusions-Modelle, die Vorgänge auch auf atomarer Ebene korrekt beschreiben.

Mithilfe eines Rastertunnelmikroskops haben Wissenschaftler des Fritz-Haber-Instituts die molekularen Prozesse in einer Reaktionsfront jetzt erstmals direkt sichtbar gemacht. Dabei stellte sich heraus, dass man die Konzepte einfacher Reaktions-Diffusions-Modelle nicht auf den kleinen Maßstab von Atomen und Molekülen übertragen kann. Vor allem müssen künftig die Wechselwirkungen zwischen den reagierenden Partnern berücksichtigt werden, damit man die Eigenschaften der Fronten - zum Beispiel ihre Geschwindigkeit - genau berechnen kann.

Frontartige Ausbreitungen sind nicht nur aus der Chemie, sondern auch aus anderen Bereichen der Natur und sogar bei sozialen Vorgängen bekannt: Waldbrände etwa zeigen ein ähnliches Verhalten. Weitere Beispiele sind die Pestepidemien im Mittelalter oder die Einführung des Ackerbaus in Europa in der Jungsteinzeit. Sie beginnen in einem lokal begrenzten Gebiet und breiten sich frontartig aus. Mathematisch lassen sich all diese Vorgänge ähnlich beschreiben. Bei chemischen Reaktionen, an denen meistens nur relativ einfach gebaute, einheitliche Moleküle beteiligt sind, scheinen die zugrunde liegenden Prozesse besonders leicht verständlich zu sein. Die Reaktion beginnt irgendwo und bildet lokal eine kleine Menge Reaktionsprodukt. Bei bestimmten chemischen Prozessen nimmt jedoch das entstehende Produkt selbst wieder an der Stoffumsetzung teil und beschleunigt sie dadurch. Einmal gestartet, wird der Ablauf daher immer schneller, und die Menge der erzeugten Substanz nimmt in diesem Bereich stark zu. Gleichzeitig beginnt das zunächst räumlich konzentrierte Produkt durch Diffusion auseinander zu laufen und sich in seiner Umgebung auszubreiten. Hier startet es erneut die Reaktion, die sich weiter fortsetzt. Diese Vorgänge wiederholen sich ständig - das entspricht der Ausbreitung einer Front. Die Geschwindigkeit, mit der sich die Front bewegt, kann dabei viel größer sein als die Diffusionsgeschwindigkeit. Mit einfachen theoretischen Modellen, die nur die Reaktion und die Diffusion berücksichtigen (daher der Name Reaktions-Diffusions-Modell) lässt sich dieses Verhalten im Prinzip erfassen. Dennoch gibt es Hinweise, dass diese Beschreibung zu einfach ist.

Wissenschaftler des Fritz-Haber-Instituts um Christian Sachs und Joost Wintterlin aus der Abteilung von Prof. Gerhard Ertl haben gefunden, dass bei der katalytischen Oxidation von Wasserstoff bei tiefen Temperaturen Fronten entstehen können. Die Reaktion zwischen Wasserstoff und Sauerstoff findet dabei auf der als Katalysator wirkenden Platinoberfläche statt; als Produkt entsteht Wasser. Die Messungen fanden im Ultrahochvakuum mit einem Rastertunnelmikroskop statt - ein Verfahren, das Abbildungen von Atomen und Molekülen auf Oberflächen liefert. Mit dieser Technik ist es jetzt gelungen, solche chemischen Reaktionsfronten sichtbar zu machen; bei diesen Reaktionen haben sie typische Breiten von 10 bis 100 Nanometern (= Millionstel Millimeter).

Die Berliner Forscher haben außerdem beobachtet, dass als Zwischenprodukt OH-Moleküle auf der Platinoberfläche entstehen, die sich dann mit Wasserstoffatomen zu Wasser (H2O) vereinen. Dieses Wasser reagiert aber weiter und setzt mit noch vorhandenen Sauerstoffatomen wieder OH frei. Dadurch wächst lokal die Menge an OH, sodass OH und in der Folge H2O immer schneller erzeugt werden. Wasser kann auf der Platinoberfläche diffundieren und diesen Prozess somit auch in der Umgebung auslösen. Als Ergebnis breitet sich eine Reaktionsfront aus, wobei das Zwischenprodukt OH sich in der Front anreichert.

Nachdem es nun gelungen ist, auf atomarer Skala die in den Fronten reagierenden Atome und Moleküle sichtbar zu machen, zeigen sich viel kompliziertere Prozesse, als die Reaktions-Diffusions-Modelle angenommen haben. Zwar reagieren und diffundieren die chemischen Partner tatsächlich - aber nicht unabhängig voneinander. Die OH- und H2O-Moleküle zeigen starke Wechselwirkungen, zum Beispiel bilden sich durch anziehende Kräfte zwischen den Teilchen kleine Inseln aus. Damit lässt sich erklären, warum die experimentell gemessenen Geschwindigkeiten und Profile der Fronten nicht mit den theoretisch vorhergesagten Werten übereinstimmen. Die Wissenschaftler hoffen nun, dass sich mit diesen Befunden bessere theoretische Modelle entwickeln lassen, die sich dann auch auf andere Beispiele dieses weit verbreiteten Phänomens übertragen lassen.

Viola Kirchner

Viola Kirchner | Presseinformation
Weitere Informationen:
http://www.mpg.de/index.html
http://www.fhi-berlin.mpg.de/

Weitere Berichte zu: Molekül Reaktions-Diffusions-Modell Reaktionsfront

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzen gegen Staunässe schützen
17.10.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Erweiterung des Lichtwegs macht winzige Strukturen in Körperzellen sichtbar
17.10.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz