Doppelbrücke schützt vor Krebs

Doppelte Salzbrücke entscheidend für ordnungsgemäße Funktion des Genomwächter-Proteins p53

Das Protein p53 ist unser „Genomwächter“. Wenn DNA-Schäden vorliegen, stoppt es die Zellteilung und verschafft der Zelle ausreichend Zeit, um diese zu reparieren. Bei irreparablen Schäden löst es den programmierten Zelltod aus und schützt die Zellen vor Entartung. In 50% aller menschlichen Tumore ist p53 nicht funktionstüchtig. Beim Li-Fraumeni-Syndrom, einer Erbkrankheit, die bereits in jungen Jahren zu Tumoren führt, ist p53 mutiert. Die Mutationen betreffen dessen DNA-Bindungsstelle oder destabilisieren das Protein, daneben existieren Mutationen in einem kurzen, helixförmigen Abschnitt, die in keine der beiden Kategorien fallen. Deutsche Forscher haben nun eine Erklärung gefunden, warum sie die Funktion von p53 dennoch beeinträchtigen.

Ein Team aus Wissenschaftlern vom Department Chemie der Technischen Universität München und dem Bayerischen NMR-Zentrum sowie der Penzberger Pharmaforschung der Roche Diagnostics GmbH konnte bereits zeigen, dass die DNA-Bindungsstelle von p53 in Form eines Dimeren an spezielle DNA-Stellen bindet. Der helixförmige Abschnitt scheint für diese Dimerisierung verantwortlich zu sein. Ganz zielgerichtet erzeugte die Gruppe um Horst Kessler nun verschiedene Mutationen in diesem Abschnitt und untersuchte die Mutanten auf ihre DNA-Bindefähigkeit. Als besonders interessant erwiesen sich Mutationen der Aminosäure-Positionen 180 und 181. Im Wildtyp ist Position 180 durch Glutaminsäure (Glu), Position 181 durch Arginin (Arg) besetzt. Einzelmutationen, bei denen Glu-180 durch ein Arg ersetzt wurde oder Arg-181 durch ein Glu, also zwei gleiche Aminosäuren benachbart sind, können nicht mehr dimerisieren und binden schlechter an DNA. Eine Mischung aus beiden Mutanten hingegen ist so bindungsfähig wie der Wildtyp. Sind die Positionen von Arg und Glu in einer Doppelmutation vertauscht, verhält sich diese Mutante ebenfalls analog dem Wildtyp.

Wie lassen sich diese Ergebnisse erklären? Das Geheimnis steckt in der negativen Ladung des 180-Glu und der positiven Ladung des 181-Arg. Beim Dimerisieren zweier Wildtyp-Proteinketten ziehen sich diese wechselweitig an und es bilden sich zwei so genannte Salzbrücken. Sind die beiden Aminosäuren vertauscht, macht das keinen Unterschied für die Salzbrücken, auf beiden Positionen trifft weiterhin eine positive auf eine negative Ladung. Bei den Einzelmutationen treffen dagegen gleiche Ladungen auf einander und stoßen sich ab. Werden sie gemischt, trifft positiv-positiv auf negativ-negativ – es passt also wieder.

„Unsere Ergebnisse belegen, dass die vorgeschlagene Dimerisierung, die die selektive DNA-Bindung stabilisiert, im Wesentlichen durch zwei Salzbrücken zusammen gehalten wird,“ sagt Kessler. „Zudem werden die onkogenen Mutationen der Positionen 180 und 181 des Li-Fraumeni-Syndroms verständlich. Die DNA-Bindung ist wegen der fehlenden Dimerisierung hier nicht mehr stark genug.“

Media Contact

Dr. Renate Hoer idw

Weitere Informationen:

http://www.angewandte.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer