Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlangensterne verwenden Kristalllinsen zur Erkennung herannahender Feinde

03.09.2001


Schlangensterne der Art Ophiocoma wendtii bilden kirstalline Linsen in ihrem Skelett, mit deren Hilfe sie herannahende Fressfeinde erkennen, das berichtet eine Studie in der Zeitschrift Nature vom 23. August. Dieses einzigartige ’Sehsystem’ ist das erste seiner Art, das bei heute auf der Erde lebenden Tieren beobachtet wurde. Die Entdeckung ist das Ergebnis einer gemeinsamen Studie von Wissenschaftlern am Weizmann Institut in Rehovot, Israel; von Bell Laboratories/Lucent Technologies in New Jersey und vom Natural History Museum of Los Angeles County in Los Angeles, Kalifornien.

Schlangensterne sind wirbellose Meerestiere mit gewöhnlich fünf dünnen, langen Armen, die von einem kleinen, scheibenförmigen Körper ausstrahlen. Sie gehören wie Seeigel, Seegurken, Seesterne und andere Meerestiere zum Stamm der Echinodermata (Stachelhäuter).

In den vergangenen Jahren führten Prof. Lia Addadi, Dekanin der Fakultät für Chemie des Weizmann Instituts, und Prof. Steve Weiner von der Abteilung Strukturelle Biologie des Instituts eine Reihe von Untersuchungen über die verschiedenen Möglichkeiten durch, wie Tiere ihr Skelett aufbauen. Die Wissenschaftler entdeckten, dass Tiere unterschiedliche Proteintypen produzieren, von denen einige die Bildung von Kristallen steuern. Die Idee für die gegenwärtige Studie entstand durch eine Begegnung der Weizmann-Forscher mit Dr. Gordon Hendler vom Museum für Naturgeschichte des Bezirks Los Angeles. Dr. Hendler machte sie auf eine bestimmte Art von Schlangensternen, Ophiocoma wendtii, aufmerksam; er wusste, dass Tiere dieser offensichtlich besonders lichtempfindlichen Art ihre Farbe verändern können. Obwohl diese Tiere keine als Organ ausgebildeten Augen haben, sind sie fähig, Schatten zu erkennen und vor Feinden rasch in dunkle Felsspalten zu fliehen. Händler vermutete, dass Felder von kugelförmigen Kristallstrukturen an der Oberfläche des äußeren Skeletts das Licht wie Linsen zum Nervensystem der Schlangensterne übertragen. Diese Hypothese wurde gestützt durch die Tatsache, dass die Schlangensterne in ihrem Skelett über ein relativ aufwendiges Nervennetz verfügen. Darüber hinaus scheint die Bewegung von pigmentierten Zellen zwischen den Kristallstrukturen und den Nerven die Reaktion der Schlangensterne auf Licht zu verändern.

Addadi und Weiner begannen gemeinsam mit ihrer damaligen Doktorandin Joanna Aizenberg, die heute bei Bell Laboratories arbeitet, mit der Erforschung dieses Phänomens. Sie fanden heraus, dass jedes einzelne Skelettelement mit seinen hunderten von Linsen aus einem Einkristall aus Kalzit besteht; die optische Achse des Kristalls ist ungefähr rechtwinklig zur Ebene des Linsenfeldes. Das bedeutet, dass das Kalzitlinsenfeld Licht übertragen kann, ohne es in verschiedene Richtungen zu streuen. Es stellt sich nun die Frage, ob der Brennpunkt der Linse in ihrer spezifischen geometrischen Form genau über dem Gebiet liegt, wo unter dem Skelett die Nerven des Schlangensterns verlaufen? Mit anderen Worten: Leiten und bündeln die Linsen Licht und übertragen die konzentrierten Strahlen ins Innere des Gewebes zum Nervensystem?

Diese Fragen blieben fast zehn Jahre unbeantwortet, bis die Forscher jüngst einen Weg fanden, sie experimentell auf kontrollierte Weise zu überprüfen. Das Experiment wurde bei Bell Laboratorien mit Hilfe von Lithografie, einer Halbleiter-Technik, durchgeführt. Dr. Aizenberg entfernte eine Kalzitkristallgruppe aus dem Skelettelement eines Schlangensterns der Art Ophiocoma wendtii, legte es auf eine Schicht photosensitiven Materials und strahlte Licht ein. Wie sie feststellte, erreicht das Licht das photosensitive Material an Stellen direkt unter den Kalzitkristallen. Durch Veränderung der Entfernung zwischen den Linsen und dem lichtempfindlichen Material fand sie heraus, dass die Brennweite jeder Linse - jene Entfernung, bei der die Linse das Licht etwa fugenzigfach konzentriert - genau mit der Tiefe übereinstimmt, in der die Nervenbündel, die vermutlich als Fotorezeptoren dienen, im Gewebe der Schlangensterne eingelagert sind.

Die Kristalllinsen und die pigmentierten Zellen im Skelett von Ophiocoma wendtii dienen somit als ’korrektive Brillen,’ die das Licht filtern und auf die Fotorezeptoren fokussieren. Diese Art ’Sehsystem’ wurde bisher bei keinem gegenwärtig auf der Erde vorkommenden Tier beschrieben, doch Prof. Weiner macht darauf aufmerksam, dass Kalzitkristalle auch in den Facettenaugen von Trilobiten vorkamen, also bei heute ausgestorbenen Meerestieren, die die Erde vor rund 350 Millionen Jahren bevölkerten.

In ihrem Bericht in Nature schreiben die Wissenschaftler abschließend: ’Die hier gezeigte Verwendung von Kalzit bei Schlangensternen, sowohl als optisches Element als auch als mechanische Stütze, veranschaulicht die beachtliche Fähigkeit von Lebewesen, durch den Prozess der Evolution ein Material für mehrere Funktionen zu optimieren, was wiederum neue Ideen für die Herstellung ’intelligenter’ Werkstoffe liefert.’

Prof. Stephen Weiner ist Inhaber des Dr.-Walter-und-Trude-Borchardt Lehrstuhls für Strukturelle Biologie. Seine Forschungsarbeit wird gefördert durch das Helen-und-Martin-Kimmel-Zentrum für archaeolgische Forschung, George Schwartzman aus Sarasota, Florida und die Angel-Faivovich-Stiftung für Umweltforschung.

Prof. Lia Addadi ist Inhaberin des Dorothy-und-Patrick-Gorman-Lehrstuhls. Ihre Forschungsarbeit wird unterstützt durch die Minerva-Stiftung Gesellschaft für die Forschung m.b.H.

Debbie Weiss | idw

Weitere Berichte zu: Kristalllinsen Linse Meerestier Ophiocoma Schlangensterne Skelett

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Maßgeschneiderte Nanopartikel gegen Krebs gesucht
29.06.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Elektrisch leitende Hülle für Bakterien
29.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der schärfste Laserstrahl der Welt

Physikalisch-Technische Bundesanstalt entwickelt einen Laser mit nur 10 mHz Linienbreite

So nah an den idealen Laser kam bisher noch keiner: In der Theorie hat ein Laser zwar genau eine einzige Farbe (Frequenz bzw. Wellenlänge). In Wirklichkeit...

Im Focus: Wellen schlagen

Computerwissenschaftler verwenden die Theorie von Wellenpaketen, um realistische und detaillierte Simulationen von Wasserwellen in Echtzeit zu erstellen. Ihre Ergebnisse werden auf der diesjährigen SIGGRAPH Konferenz vorgestellt.

Denkt man an einen See, einen Fluss oder an das Meer, so sieht man vor sich, wie sich das Wasser kräuselt, wie Wellen gegen die Felsen schlagen, wie Bugwellen...

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der schärfste Laserstrahl der Welt

29.06.2017 | Physik Astronomie

Maßgeschneiderte Nanopartikel gegen Krebs gesucht

29.06.2017 | Biowissenschaften Chemie

Wolken über der Wetterküche: Die Azoren im Fokus eines internationalen Forschungsteams

29.06.2017 | Geowissenschaften