Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Regulation von Tumorzelltod und Chemoresistenz

01.08.2005


Sauerstoffmangel ist lebensbedrohlich und führt zum Tod. Als Schutzmechanismus besitzen Zellen einen Sauerstoffsensor, der bei reduzierter Sauerstoffversorgung (Hypoxie) aktiviert wird und nach Expression diverser Gene Zellen in die Lage versetzt, ihre Vitalität zu erhalten. Zentraler Regulator ist der Hypoxie-induzierbare Transkriptionsfaktor HIF (hypoxia inducible factor). Seit kurzem ist bekannt, dass HIF auch unter ausreichender Sauerstoffversorgung (Normoxie) durch Entzündungsmediatoren, wie Zytokine, Stickstoffmonoxid (NO) oder Sauerstoffradikale (ROS: reactive oxygen species), aktiviert wird. Dies erweitert den Einflussbereich von HIF und führt zu neuen, biomedizinischen Fragestellungen im Bereich von Entzündung, Angiogenese und Tumorbiologie.


Immunhistochemische Analysen zeigen eine deutliche Expression von HIF-1a in bösartigen Tumoren. Ein wachsender Tumor wird im Inneren hypoxisch und aktiviert HIF-1. Hier wird das Potential von HIF-1 zur Genaktivierung "missbraucht", um Wachstum zu sichern. Darüber hinaus führen Tumor-assoziierte Mutationen, z.B. in den Tumorsuppressorproteinen p53, PTEN (phosphatase and tensin homolog deleted from chromosome 10) oder pVHL (von Hippel Lindau Protein) zur verstärkten HIF-1a-Expression. Ein Erklärungsansatz könnte sein, dass HIF die Vitalität von Tumoren nicht nur durch Angiogenese (Neubildung von Blutgefäßen) bzw. Glykolyse (Bereitstellung von Energie in Abwesenheit von Sauerstoff), sondern auch durch den Schutz vor Apoptose (dem programmierten Zelltod) verbessert. Zellen, die vor Apoptose geschützt sind, zeigen eine verminderte Ansprechbarkeit gegenüber Chemotherapeutika.

Leider ist z.Z. völlig unverstanden, unter welchen Bedingungen Hypoxie zum Zelltod über Apoptose führt oder Zellen vor Apoptose schützt und so zum Problem der Chemoresistenz beiträgt. Wir möchten durch unsere Studien erarbeiten, wann Hypoxie den Zelltod oder Zellschutz vermittelt und wie der endogene Botenstoff NO (Stickstoffmonoxid) Tumorzellen gegenüber Chemotherapeutika sensibilisiert. Wir vermuten in der Stabilisierung von HIF-1a den entscheidenden Faktor einer Resistenz gegenüber Chemotherapeutika. Entsprechend müsste der HIF-1alpha Abbau Zellen gegenüber Apoptoseagonisten sensitivieren. Dies soll experimentell überprüft werden, indem HIF-1alpha gezielt in Tumorzellen degradiert wird. Dabei vermuten wir eine zentrale Rolle von NO.


Die Suche nach Mechanismen, die HIF-1a oder dessen Stabilität/Expression beeinflussen, könnte sich als lohnenswerter Ansatz bei der Tumortherapie entwickeln.

Kontakt:
Prof. Dr. Bernhard Brüne,
Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Biochemie I,
Tel: +49-69-6301 7423, E-mail: bruene@zbc.kgu.de

Bernhard Knappe | idw
Weitere Informationen:
http://www.wilhelm-sander-stiftung.de
http://www.zbc.kgu.de/pathobiochemie

Weitere Berichte zu: Apoptose Chemoresistenz Chemotherapeutika HIF HIF-1a Hypoxie Zelltod

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics