Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Evolution der Pflanzenzelle - Äußere Hülle der Chloroplasten wohl bakterielles Erbe

28.07.2005


Die Chloroplasten sind die Photosynthese betreibenden Einheiten der Pflanzenzelle. Wie die Energie erzeugenden Mitochondrien auch, stammen sie von Bakterien ab. So lassen sich anhand verschiedener Merkmale immer noch Gemeinsamkeiten feststellen. Umstritten war allerdings, ob die äußere der beiden Hüllmembranen von Zellbestandteilen wie den Chloroplasten von dem ursprünglichen Bakterium stammt oder der Wirtszelle, die dieses aufgenommen hat. Das Team um Dr. Enrico Schleiff vom Department für Biologie I der Ludwig-Maximilians-Universität (LMU) München hat jetzt Hinweise gefunden, die auf einen bakteriellen Ursprung dieser Membran hindeuten, wie in der online-Ausgabe des Fachmagazins Journal of Biological Chemistry berichtet. Ausgangspunkt der Untersuchung war ein Protein in der Chloroplastenhülle, das Proteine in das Organell transportiert. Die Wissenschaftler fanden ein Protein in der Hülle eines nahe verwandten Bakteriums, das so ähnlich ist, dass es die Chloroplastenproteine ebenfalls erkennen und transportieren kann, was auf eine gemeinsame Abstammung hindeutet.



Die Energie erzeugenden Mitochondrien, die Chloroplasten der Pflanzen und andere Zellbestandteile höherer Organismen stammen von Bakterien ab, die von den Zellen aufgenommen und integriert wurden. Diese Organellen haben seit langem ihre Selbständigkeit verloren und können nur noch in der Zelle überleben. Dennoch sieht man ihnen ihr Erbe an: Es gibt zahlreiche strukturelle und funktionale Gemeinsamkeiten zwischen diesen Zellbestandteilen und den Bakterien, von denen sie abstammen. Doch noch immer sind nicht alle Fragen der Entstehung und Anpassung dieser Zellorganellen gelöst. Nicht geklärt ist etwa, woher die äußere der beiden Hüllmembranen der Plastiden, also der Chloroplasten und ähnlicher Zellbestandteile, stammt. "Im Lauf der Evolution wurden die meisten ehemals bakteriellen Gene in den Kern der Wirtszelle übertragen", berichtet Schleiff. "Damit werden auch die Genprodukte, die entsprechenden Proteine, im Zellinneren synthetisiert. Diese müssen dann in die Chloroplasten gelangen, was die Existenz eines Transportapparates bedingt. Bis vor kurzem war auch nicht bekannt, woher dieser Komplex kam und wie er sich entwickelte."



Das Team um Schleiff konzentrierte sich bei seinen Untersuchungen auf die Blaualge des Genus Nostoc. Denn diese Bakterien sind den Plastiden genetisch eng verwandt. "Wir analysierten die Zusammensetzung der Proteine in der äußeren Membran einer bestimmten Nostoc-Art", so Schleiff. "Dabei fanden wir ein Protein, das eine hohe Ähnlichkeit zu dem Transportkanal für Proteine in der äußeren Hüllmembran von Plastiden aufweist." Wie Schleiff und seine Mitarbeiter nachweisen konnten, besitzt das bakterielle Protein Eigenschaften, die es geeignet erscheinen lassen, als späterer Importkanal zu fungieren. "Es hat sich sogar gezeigt, dass dieses Protein in der Lage ist, die Zielsteuerungssequenz von Vorstufenproteinen der Plastiden zu erkennen." Diese weisen sich damit aus, um in die Plastiden transportiert zu werden. Es konnte allerdings keine Wechselwirkung zwischen dem bakteriellen Protein und anderen Komponenten des Transportkomplexes in den Plastiden gezeigt werden.

"Aus diesen Beobachtungen schlussfolgern wir zwei Dinge", so Schleiff. "Zum einen muss der gemeinsame Vorfahr des Nostoc-Proteins und des Plastiden-Proteins schon in der Lage gewesen sein, Vorstufenproteine zu erkennen und zu transportieren, so dass er wohl den evolutionären Grundkomplex gebildet hat. Daneben müssen die anderen Komponenten des Transportkomplexes der Plastiden aber während der evolutionären Entwicklung beigefügt worden sein." Eine detaillierte Analyse des Proteins in Nostoc und des verwandten Chloroplastenproteins zeigte zudem, dass beide aus zwei funktionellen Bereichen bestehen. Einer davon bildet eine Pore in der Membran, die den Eintritt der Vorstufenproteine erlaubt.

Aus evolutionärer Sicht ist besonders interessant, dass diese porenbildende Region zweigeteilt ist, wobei die Bereiche sehr ähnlich sind. Vermutlich entstand also auch die Pore evolutionär aus einem Grundbaustein, der durch Genduplikation verdoppelt wurde. "Unsere Arbeit bietet erste Anhaltspunkte für die evolutionäre Entstehung des Transportkomplexes in der Plastidenmembran und bestimmter daran beteiligter Proteine", meint Schleiff. "Die Identifizierung von ähnlichen Proteinen in der äußeren Membran der Bakterien und der äußeren Membran von Plastiden ist aber auch ein Ansatzpunkt zum Verständnis des Ursprungs eben dieser Membran."

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de

Weitere Berichte zu: Bakterium Chloroplasten Membran Plastide Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik