Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Möglicher Ansatzpunkt für Krebstherapie - Pilzwirkstoff soll fehlregulierte Genaktivität aufklären

20.07.2005


Histon-Proteine spielen eine wichtige Rolle bei der Regulation der Aktivität von Genen, den kodierenden Abschnitten des Erbmoleküls DNA. Ob und in welcher Menge Genprodukte hergestellt werden, hängt unter anderem auch davon ab, ob Histone chemisch verändert wurden, etwa durch Anhängung einer so genannten Methylgruppe. Chaetocin, eine in Pilzen vorkommende Substanz, hemmt ein Enzym, das Methylgruppen auf ein spezifisches Histon überträgt. Das konnte ein Team um Dr. Axel Imhof vom Adolf-Butenandt-Institut für Physiologische Chemie, Molekularbiologie, Stoffwechselbiochemie und Zellbiologie der Ludwig-Maximilians-Universität (LMU) München jetzt zeigen, wie in der online-Ausgabe des Fachmagazins Nature Chemical Biology berichtet. Chaetocin soll helfen, die Rolle der Histone bei der Genregulation besser zu verstehen - und möglicherweise Ansatzpunkt für eine Krebstherapie sein. Denn Fehler bei bestimmten Histonmodifikationen sind oft in Tumorzellen zu finden und häufen sich im Verlauf der Erkrankung an, wie ein internationales Team um Imhof vor einiger Zeit im Fachmagazin Nature Genetics zeigen konnte.



Hoch geordnet liegt die DNA im Zellkern vor. Wie um eine Spule wickelt sich das fadenförmige Erbmolekül um Histon-Proteine. Diese Interaktion wirkt sich auch auf die Aktivität von Genen aus. Besonders wichtig in diesem Zusammenhang sind reversible Modifikationen der Histone. Deren Bedeutung zeigt sich auch daran, dass Fehler bei diesen Veränderungen zu Krebs führen können. Am besten verstanden ist dies bei der so genannten Acetylierung, also der Anhängung von Acetylgruppen an Histone. Es gibt bereits Wirkstoffe, die Histon acetylierende Enzyme hemmen und in der Krebstherapie eingesetzt werden sollen.



Aber auch die Methylierung, also Anhängung von Methylgruppen an Histone, spielt in diesem Zusammenhang eine Rolle. Imhof konnte im Rahmen einer Kooperation mit spanischen Wissenschaftlern zeigen, dass es bei vielen Tumoren gleichzeitig zu Veränderungen im Muster der Acetylierung und der Methylierung von Histonen kommt. Dabei nehmen die Unterschiede zwischen den Krebszellen und normalen Zellen im Verlauf der Erkrankung sogar zu. Die Forscher fanden bestimmte Fehler der Histonmodifikation so häufig, dass sie als typisch für Krebszellen angesehen werden können.

"In vielen Fällen wurde bereits nachgewiesen, dass Histon-Methyltransferasen in Tumoren fehlreguliert sein können", berichtet Axel Imhof, "dann wird von diesen Enzymen, die Methylgruppen auf Histone übertragen, eine größere oder kleinere Menge als normal hergestellt. So treten Methylierungen an bestimmten Bausteinen der Histone vermehrt auf oder fehlen ganz." Diese veränderten Methylierungsmuster könnten in Zukunft möglicherweise Verwendung finden als natürliche Indikatoren für bestimmte Charakteristika der Krebserkrankungen. "Mit Hilfe dieser so genannten Biomarker könnten dann beispielsweise die Schwere oder der Verlauf des Leidens besser vorhergesagt werden", so Imhof. "Bestimmte Methylierungsmuster in den Tumorzellen eines Patienten würden dann vielleicht anzeigen, dass eine sehr starke Chemotherapie nötig ist, während in einem anderen Fall schon eine milde Nachbehandlung ausreichen würde."

Bei diesen Therapien könnten dann wiederum Inhibitoren der Histon-modifizierenden Enzyme eine Rolle spielen. Das von Imhof und seinen Mitarbeitern charakterisierte Chaetocin etwa, eine in Pilzen gefundene Substanz, hemmt sehr spezifisch eine bestimmte Methyltransferase, zeigt aber auch eine gewisse Wirkung auf verwandte Enzyme. "Der Schluss liegt nahe, dass die Methyltransferasen selbst eine kausale Rolle bei der Tumorentstehung spielen und damit ein mögliches Ziel für eine Therapie sind", meint Imhof. "Chaetocin ist der erste spezifische Hemmstoff eines solchen Enzyms. Bis solche Moleküle therapeutisch nutzbar sind, ist es natürlich noch ein weiter Weg. Wir hoffen aber jetzt schon durch den gezielten Einsatz des Hemmstoffs ein besseres Verständnis zur Regulation der Genexpression durch Histonmethyltransferasen zu gewinnen." (suwe)

Veröffentlichungen:

"Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9", Dorothea Greiner, Tiziana Bonaldi, Ragnhild Eskeland, Ernst Roemer and Axel Imhof, Nature Chemical Biology, Epub 2005 17 July | doi: 10.1038/nchembio721

"Loss of acetylated Lysine 16 and Trimethylated Lysine 20 of Histone H4 is a common hallmark of human cancer", Mario F. Fraga et. al., Nat Genetics 2005 Apr;37(4):391-400. Epub 2005 Mar 13.

Ansprechpartner:

Dr. Axel Imhof
Adolf Butenandt-Institut für Physiologische Chemie, Molekularbiologie, Stoffwechselbiochemie und Zellbiologie
- Lehrstuhl Molekularbiologie -
Tel: 089 2180-75435
Fax: 089/2180-75425
E-Mail: imhof@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Chaetocin Enzym Histon Krebstherapie Methylgruppe Methylierung Molekularbiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics