Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Proteine Elektronen transportieren

13.07.2005


Die Arbeitsgruppe von Prof. Markus Grütter der Universität Zürich konnte in Zusammenarbeit mit Forschern der Gruppe von Prof. Rudi Glockshuber von der ETH Zürich die atomare Struktur zweier Eiweisse bestimmen, deren Komplex eine wichtige Rolle in der Energiegewinnung ohne Sauerstoff des Bakteriums Escherichia coli spielt. Das bessere Verständnis der Energiegewinnung von Bakterien ist eine Voraussetzung, um krankheitserregende Bakterien besser bekämpfen zu können. Die Resultate sind in der amerikanischen Wissenschaftszeitschrift Structure (Volume 13, Issue 7, 2005) publiziert worden. Das Projekt fand im Rahmen des nationalen Forschungsschwerpunktes Strukturbiologie statt.


Die Abbildung zeigt den Protein-Protein-Komplex zwischen DsbD (in roter Farbe; rechts) und CcmG (in grau).



Forschungsarbeiten, welche Interaktionen zwischen Proteinen untersuchen und die strukturbiologische Aufklärung von atomaren Proteinstrukturen werden immer wichtiger. Anhand der Strukturen von Protein-Protein-Komplexen können Rückschlüsse auf Stoffwechselwege und andere zelluläre Prozesse gezogen und das Verständnis für Lebensvorgänge erweitert werden.



Ein lebenswichtiger Prozess

Die Forschungsteams um Markus Grütter und Rudi Glockshuber befassen sich mit Proteinen, die für die Energiegewinnung ohne Sauerstoff des Bakteriums Escherichia coli wichtig sind. Dieser Prozess ist so interessant für die Forscher, weil er in allen Lebewesen zent-ral für die Energiegewinnung und somit grundlegend für das Leben ist. Konkret geht es um die Frage, wie Elektronen von Protein zu Protein übertragen werden, um letztlich das für die Atmungskette wichtige Protein Cytochrom c funktionsbereit zu machen. Untersucht haben die Forscher die Proteine DsbD und CcmG. Deren Zusammenwirken bei der Reifung von Cytochrom c war bisher umstritten.

Erst das Zusammenspiel von DsbD und CcmG bringt Elektronen in Fluss

Durch biochemische Experimente konnte gezeigt werden, dass beide Proteine DsbD und CcmG für diesen Prozess nötig sind. Die atomare Struktur beweist, dass die beiden Eiweisse einen Komplex bilden, also direkt miteinander interagieren, um ihre Funktion wahrzunehmen. Dabei werden Elektronen von DsbD auf CcmG übertragen. In weiteren Schritten überträgt CcmG diese Elektronen via andere Proteine (CcmH) auf Cytochrom c zu dessen Aktivierung.

Die Flexibilität von DsbD erlaubt vielseitige Interaktionen

Die Analyse der Kontaktfläche zwischen den beiden Proteinen DsbD und CcmG brachte zudem neue Erkenntisse über die Mechanismen, welche für die Übertragung von Elektronen von DsbD auf andere Proteine notwendig sind. Es zeigte sich, dass DsbD strukturell so flexibel ist, dass es mit Proteinen ganz unterschiedlicher Stoffwechselwege interagieren kann. So konnten die Forscher schon in einer früheren Arbeit die Interaktion von DsbD mit dem Protein DsbC zeigen, wo es um etwas ganz anderes, nämlich die Repartur falsch gefalteter Protein geht. Die neusten Ergebnisse der Forscher sind deshalb von grundlegender Bedeutung für das Verständnis des Elektronentransports und für die Art wie Proteine miteinander interagieren.

Die Forschungsgruppen von Prof. Dr. Markus G. Grütter (Universität Zürich) und Prof. Dr. Rudi Glockshu-ber (ETH Zürich) sind Mitglieder des NCCR Strukturbiologie. Der NCCR Strukturbiologie ist eines von 14 Schwerpunktsprogrammen des Schweizerischen Nationalfonds. Im Zentrum steht die Aufklärung von Proteinstrukturen und deren Funktion. Dem Programm angeschlossen sind an die 200 Forschende der Universitäten Zürich und Basel, der ETH Zürich, des Paul Scherrer Instituts und der Universität Lausanne. Unterstützt wird das Programm vom Nationalfonds, der Universität Zürich und der ETH Zürich.

Beat Müller | idw
Weitere Informationen:
http://www.structuralbiology.unizh.ch.

Weitere Berichte zu: Bakterium CcmG DsbD ETH Elektron Energiegewinnung Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Polymere aus Bor produzieren
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Modularer Genverstärker fördert Leukämien und steuert Wirksamkeit von Chemotherapie
18.01.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

18.01.2018 | Informationstechnologie

Optimierter Einsatz magnetischer Bauteile - Seminar „Magnettechnik Magnetwerkstoffe“

18.01.2018 | Seminare Workshops

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungsnachrichten