Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Max-Planck-Wissenschaftler entdecken ungewöhnliche Dynamik von Aktivitätsmustern innerhalb skalenfreier Netzwerke

12.07.2005


Unsere Biosphäre enthält verschiedene skalenfreie Netzwerke. Besonders interessant sind die funktionalen Netzwerke innerhalb des menschlichen Gehirns. Wissenschaftler am Max-Planck-Institut für Kolloid- und Grenzflächenforschung haben entdeckt, dass die Aktivitätsmuster derartiger Netzwerke ungewöhnliche dynamische Eigenschaften besitzen. Diese werden von nur wenigen Knoten mit einer hohen Anzahl von Verbindungen bestimmt. Geordnete Aktivitätsmuster sind deshalb sehr robust gegenüber zufälligen Störungen, reagieren jedoch sehr empfindlich, wenn die stark vernetzten Knoten selektiv gestört werden. Ungeordnete Muster sind andererseits immer instabil und wandeln sich sehr schnell in geordnete Muster um, und zwar selbst dann, wenn das Netzwerk unendlich groß ist. Die Netzwerke können zudem eine große Anzahl von vorgegebenen Mustern speichern und wieder abrufen (PNAS, Advanced Online Publication, 8. Juli 2005).


Drei aufeinander folgende Schnappschüsse von Aktivitätsmustern innerhalb eines relativ kleinen skalenfreien Netzwerks mit 31 Knoten und 50 Verbindungen. Die aktiven und inaktiven Knoten werden weiß bzw. schwarz dargestellt. Bei dem anfänglichen Muster auf der linken Seite sind die Hälfte der Knoten inaktiv (schwarz); bei dem abschließenden Muster auf der rechten Seite sind nahezu alle Knoten aktiv (weiß). Jeder Knoten des Netzwerks besitzt einen gewissen Verbindungsgrad, der der Anzahl der Verbindungen entspricht, die den Knoten angefügt sind. Diese Zahl wird für einige Knoten auf der linken Seite genau angegeben. Der Knoten mit dem höchsten Verbindungsgrad befindet sich in der Mitte des Netzwerks und besitzt 21 Verbindungen. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung



Das menschliche Gehirn besteht aus ca. 100 Milliarden Nervenzellen oder Neuronen, die so miteinander verbunden sind, dass sie ein riesiges Netzwerk bilden. Jedes einzelne Neuron ist in der Lage selbst aktiv zu werden, indem es ein Aktionspotential erzeugt. Wäre es möglich, einen Schnappschuss vom gesamten neuralen Netzwerk zu erstellen, würde zu jeder Zeit ein spezielles Muster von aktiven und inaktiven Neuronen erscheinen. Vereint man die Schnappschüsse zu einem Film, erhält man Aktivitätsmuster, die sich kontinuierlich mit der Zeit ändern (s. Abb. 1). Die Entwicklung dieser Muster repräsentiert die globale Dynamik des neuralen Netzwerks. Bislang ist es noch nicht möglich, Aktivitätsmuster auf der Ebene der einzelnen Neuronen zu beobachten. Moderne bildgebende Verfahren bieten jedoch die Möglichkeit, derartige Muster mit einer reduzierten räumlichen Auflösung darzustellen. Benutzt man zum Beispiel die Magnet-Resonanz-Tomographie, so kann man die Aktivität von etwa 100.000 Neuronencluster auflösen, die jeweils aus rund einer Million Neuronen bestehen. Auf diese Weise erhält man dynamische Aktivitätsmuster auf einem neuen, funktionalen Netzwerk, dessen Knoten durch die Neuronencluster gebildet werden.



In jedem Netzwerk können die Knoten durch ihren Verbindungsgrad charakterisiert werden, d.h. durch die Anzahl der Verbindungen zu anderen Knoten (vgl. Abb.1). Dieser Verbindungsgrad variiert von Knoten zu Knoten. Wenn man die Anzahl der Knoten innerhalb des Netzwerks zählt, die einen bestimmten Verbindungsgrad besitzen, erhält man ein Histogramm oder die genaue Verteilung des Verbindungsgrades im Netzwerk. Diese Verteilung bestimmt die Wahrscheinlichkeit P(k), dass ein zufällig gewählter Knoten des Netzwerkes k Verbindungen besitzt. Mittels Magnet-Resonanz-Tomographie wurde kürzlich ermittelt, dass die funktionalen Netzwerke im menschlichen Gehirn eine skalenfreie Wahrscheinlichkeits-Verteilung P(k) besitzen.

Um die Bezeichnung "skalenfrei" zu verstehen, ist es aufschlussreich, die Wahrscheinlichkeiten P(10), P(100), P(1000), P(10.000) usw. zu betrachten, die angeben, dass ein zufällig herausgegriffener Knoten 10, 100, 1000, 10.000 usw. Verbindungen besitzt. Ein skalenfreies Netzwerk hat die Eigenschaft, dass das Verhältnis P(100)/P(10) genauso groß ist wie das Verhältnis P(1000)/P(100), das wiederum genauso groß ist wie das Verhältnis P(10.000)/P(1000) usw. Der Logarithmus dieses konstanten Verhältnisses definiert den so genannten Zerfallsexponenten. Für die funktionalen Netzwerke des menschlichen Gehirns, hat der Zerfallsexponent einen Wert von etwa 2.1.

Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung haben jetzt ungewöhnliche dynamische Eigenschaften von Aktivitätsmustern auf derartigen skalenfreien Netzwerken entdeckt. Geordnete Aktivitätsmuster sind einerseits sehr robust gegenüber Störungen von zufällig ausgewählten Knoten, reagieren jedoch sehr empfindlich auf selektive Störungen der wenigen Knoten, die stark vernetzt sind. Mit einer derartigen selektiven Störung kann man ein bestimmtes geordnetes Aktivitätsmuster leicht in ein anderes geordnetes Muster umwandeln. Tatsächlich reagiert das skalenfreie Netzwerk auf solche selektive Störungen umso empfindlicher, je mehr sich der Zerfallsexponent dem Grenzwert 2 nähert. Ungeordnete Muster sind dagegen immer instabil und wandeln sich in relativ kurzer Zeit in geordnete Muster um. Diese Eigenschaft gilt sogar für unendliche Netzwerke, für die man eigentlich eine unendliche Zerfallszeit erwarten würde. Die relativ wenigen, stark vernetzten Knoten sind offenbar in der Lage, die relevanten Informationen über das gesamte Netzwerk zu streuen. Skalenfreie Netzwerke führen demnach zu geordneten Aktivitätsmustern, die sich trotz ihrer Stabilität gegenüber zufälligen Störungen relativ schnell ineinander umwandeln oder "umschalten" lassen.

Derartige Netzwerke können auch benutzt werden, um eine bestimmte Anzahl von vorgegebenen Aktivitätsmustern zu speichern und wieder abzurufen. Die neue PNAS-Studie zeigt, dass skalenfreie Netzwerke mit einem Zerfallsexponenten, der größer ist als zwei, aber kleiner als 2,5, eine sehr große Anzahl von Mustern speichern können. Diese Anzahl erhöht sich kontinuierlich mit der Netzwerkgröße. Nähert sich der Zerfallsexponent dem Grenzwert 2, so wächst die Speicherkapazität des Netzwerks sogar proportional mit der Netzwerkgröße an. Übersteigt der Zerfallsexponent jedoch den Grenzwert von 2,5 bleibt die Zahl der gespeicherten Muster selbst für ein unendlich großes Netz klein. Skalenfreie biomimetische Netzwerke mit einem Exponenten größer 2 und kleiner 2,5 könnten so mögliche Designs für assoziative Speicher und Mustererkennung zur Verfügung stellen.

Die beschriebenen dynamischen Eigenschaften beschränken sich aber nicht auf neurale Netzwerke. In der Tat findet man in der Biosphäre eine ganze Hierarchie von skalenfreien Netzwerken, die typischerweise einen Zerfallsexponenten in diesem Bereich aufweisen. Diese Eigenschaft gilt zum Beispiel auch für metabolische Netzwerke innerhalb biologischer Zellen, wie bereits für 43 verschiedene Organismen aus allen drei Reichen des Lebens (Eukaryoten, Prokaryoten und Archäen) gezeigt wurde.

Auf der makroskopischen Ebene, die unserer Wahrnehmung direkt zugänglich ist, findet man Skalenfreiheit bei vielen sozialen Netzwerken, die auf unterschiedlichen Tätigkeiten beruhen wie der Zusammenarbeit von Schauspielern, der Co-Autorschaft von Wissenschaftlern oder häufiger Telefongespräche. Schließlich kann man die gleiche skalenfreie Struktur auch für die Netzwerke von Internet-Routern und Links auf dem World Wide Web finden. Alle diese Netze haben die Eigenschaft, dass ihre Aktivitätsmuster von relativ wenigen Knoten gesteuert werden, die eine hohe Anzahl von Verbindungen aufweisen.

Originalveröffentlichung:

Haijun Zhou and Reinhard Lipowsky
Dynamic pattern evolution on scale-free networks
PNAS, Advanced Online Publication, 8 July 2005

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten