Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Max-Planck-Wissenschaftler entdecken ungewöhnliche Dynamik von Aktivitätsmustern innerhalb skalenfreier Netzwerke

12.07.2005


Unsere Biosphäre enthält verschiedene skalenfreie Netzwerke. Besonders interessant sind die funktionalen Netzwerke innerhalb des menschlichen Gehirns. Wissenschaftler am Max-Planck-Institut für Kolloid- und Grenzflächenforschung haben entdeckt, dass die Aktivitätsmuster derartiger Netzwerke ungewöhnliche dynamische Eigenschaften besitzen. Diese werden von nur wenigen Knoten mit einer hohen Anzahl von Verbindungen bestimmt. Geordnete Aktivitätsmuster sind deshalb sehr robust gegenüber zufälligen Störungen, reagieren jedoch sehr empfindlich, wenn die stark vernetzten Knoten selektiv gestört werden. Ungeordnete Muster sind andererseits immer instabil und wandeln sich sehr schnell in geordnete Muster um, und zwar selbst dann, wenn das Netzwerk unendlich groß ist. Die Netzwerke können zudem eine große Anzahl von vorgegebenen Mustern speichern und wieder abrufen (PNAS, Advanced Online Publication, 8. Juli 2005).


Drei aufeinander folgende Schnappschüsse von Aktivitätsmustern innerhalb eines relativ kleinen skalenfreien Netzwerks mit 31 Knoten und 50 Verbindungen. Die aktiven und inaktiven Knoten werden weiß bzw. schwarz dargestellt. Bei dem anfänglichen Muster auf der linken Seite sind die Hälfte der Knoten inaktiv (schwarz); bei dem abschließenden Muster auf der rechten Seite sind nahezu alle Knoten aktiv (weiß). Jeder Knoten des Netzwerks besitzt einen gewissen Verbindungsgrad, der der Anzahl der Verbindungen entspricht, die den Knoten angefügt sind. Diese Zahl wird für einige Knoten auf der linken Seite genau angegeben. Der Knoten mit dem höchsten Verbindungsgrad befindet sich in der Mitte des Netzwerks und besitzt 21 Verbindungen. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung



Das menschliche Gehirn besteht aus ca. 100 Milliarden Nervenzellen oder Neuronen, die so miteinander verbunden sind, dass sie ein riesiges Netzwerk bilden. Jedes einzelne Neuron ist in der Lage selbst aktiv zu werden, indem es ein Aktionspotential erzeugt. Wäre es möglich, einen Schnappschuss vom gesamten neuralen Netzwerk zu erstellen, würde zu jeder Zeit ein spezielles Muster von aktiven und inaktiven Neuronen erscheinen. Vereint man die Schnappschüsse zu einem Film, erhält man Aktivitätsmuster, die sich kontinuierlich mit der Zeit ändern (s. Abb. 1). Die Entwicklung dieser Muster repräsentiert die globale Dynamik des neuralen Netzwerks. Bislang ist es noch nicht möglich, Aktivitätsmuster auf der Ebene der einzelnen Neuronen zu beobachten. Moderne bildgebende Verfahren bieten jedoch die Möglichkeit, derartige Muster mit einer reduzierten räumlichen Auflösung darzustellen. Benutzt man zum Beispiel die Magnet-Resonanz-Tomographie, so kann man die Aktivität von etwa 100.000 Neuronencluster auflösen, die jeweils aus rund einer Million Neuronen bestehen. Auf diese Weise erhält man dynamische Aktivitätsmuster auf einem neuen, funktionalen Netzwerk, dessen Knoten durch die Neuronencluster gebildet werden.



In jedem Netzwerk können die Knoten durch ihren Verbindungsgrad charakterisiert werden, d.h. durch die Anzahl der Verbindungen zu anderen Knoten (vgl. Abb.1). Dieser Verbindungsgrad variiert von Knoten zu Knoten. Wenn man die Anzahl der Knoten innerhalb des Netzwerks zählt, die einen bestimmten Verbindungsgrad besitzen, erhält man ein Histogramm oder die genaue Verteilung des Verbindungsgrades im Netzwerk. Diese Verteilung bestimmt die Wahrscheinlichkeit P(k), dass ein zufällig gewählter Knoten des Netzwerkes k Verbindungen besitzt. Mittels Magnet-Resonanz-Tomographie wurde kürzlich ermittelt, dass die funktionalen Netzwerke im menschlichen Gehirn eine skalenfreie Wahrscheinlichkeits-Verteilung P(k) besitzen.

Um die Bezeichnung "skalenfrei" zu verstehen, ist es aufschlussreich, die Wahrscheinlichkeiten P(10), P(100), P(1000), P(10.000) usw. zu betrachten, die angeben, dass ein zufällig herausgegriffener Knoten 10, 100, 1000, 10.000 usw. Verbindungen besitzt. Ein skalenfreies Netzwerk hat die Eigenschaft, dass das Verhältnis P(100)/P(10) genauso groß ist wie das Verhältnis P(1000)/P(100), das wiederum genauso groß ist wie das Verhältnis P(10.000)/P(1000) usw. Der Logarithmus dieses konstanten Verhältnisses definiert den so genannten Zerfallsexponenten. Für die funktionalen Netzwerke des menschlichen Gehirns, hat der Zerfallsexponent einen Wert von etwa 2.1.

Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung haben jetzt ungewöhnliche dynamische Eigenschaften von Aktivitätsmustern auf derartigen skalenfreien Netzwerken entdeckt. Geordnete Aktivitätsmuster sind einerseits sehr robust gegenüber Störungen von zufällig ausgewählten Knoten, reagieren jedoch sehr empfindlich auf selektive Störungen der wenigen Knoten, die stark vernetzt sind. Mit einer derartigen selektiven Störung kann man ein bestimmtes geordnetes Aktivitätsmuster leicht in ein anderes geordnetes Muster umwandeln. Tatsächlich reagiert das skalenfreie Netzwerk auf solche selektive Störungen umso empfindlicher, je mehr sich der Zerfallsexponent dem Grenzwert 2 nähert. Ungeordnete Muster sind dagegen immer instabil und wandeln sich in relativ kurzer Zeit in geordnete Muster um. Diese Eigenschaft gilt sogar für unendliche Netzwerke, für die man eigentlich eine unendliche Zerfallszeit erwarten würde. Die relativ wenigen, stark vernetzten Knoten sind offenbar in der Lage, die relevanten Informationen über das gesamte Netzwerk zu streuen. Skalenfreie Netzwerke führen demnach zu geordneten Aktivitätsmustern, die sich trotz ihrer Stabilität gegenüber zufälligen Störungen relativ schnell ineinander umwandeln oder "umschalten" lassen.

Derartige Netzwerke können auch benutzt werden, um eine bestimmte Anzahl von vorgegebenen Aktivitätsmustern zu speichern und wieder abzurufen. Die neue PNAS-Studie zeigt, dass skalenfreie Netzwerke mit einem Zerfallsexponenten, der größer ist als zwei, aber kleiner als 2,5, eine sehr große Anzahl von Mustern speichern können. Diese Anzahl erhöht sich kontinuierlich mit der Netzwerkgröße. Nähert sich der Zerfallsexponent dem Grenzwert 2, so wächst die Speicherkapazität des Netzwerks sogar proportional mit der Netzwerkgröße an. Übersteigt der Zerfallsexponent jedoch den Grenzwert von 2,5 bleibt die Zahl der gespeicherten Muster selbst für ein unendlich großes Netz klein. Skalenfreie biomimetische Netzwerke mit einem Exponenten größer 2 und kleiner 2,5 könnten so mögliche Designs für assoziative Speicher und Mustererkennung zur Verfügung stellen.

Die beschriebenen dynamischen Eigenschaften beschränken sich aber nicht auf neurale Netzwerke. In der Tat findet man in der Biosphäre eine ganze Hierarchie von skalenfreien Netzwerken, die typischerweise einen Zerfallsexponenten in diesem Bereich aufweisen. Diese Eigenschaft gilt zum Beispiel auch für metabolische Netzwerke innerhalb biologischer Zellen, wie bereits für 43 verschiedene Organismen aus allen drei Reichen des Lebens (Eukaryoten, Prokaryoten und Archäen) gezeigt wurde.

Auf der makroskopischen Ebene, die unserer Wahrnehmung direkt zugänglich ist, findet man Skalenfreiheit bei vielen sozialen Netzwerken, die auf unterschiedlichen Tätigkeiten beruhen wie der Zusammenarbeit von Schauspielern, der Co-Autorschaft von Wissenschaftlern oder häufiger Telefongespräche. Schließlich kann man die gleiche skalenfreie Struktur auch für die Netzwerke von Internet-Routern und Links auf dem World Wide Web finden. Alle diese Netze haben die Eigenschaft, dass ihre Aktivitätsmuster von relativ wenigen Knoten gesteuert werden, die eine hohe Anzahl von Verbindungen aufweisen.

Originalveröffentlichung:

Haijun Zhou and Reinhard Lipowsky
Dynamic pattern evolution on scale-free networks
PNAS, Advanced Online Publication, 8 July 2005

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der erste Blick auf ein einzelnes Protein
18.01.2017 | Max-Planck-Institut für Festkörperforschung, Stuttgart

nachricht Unterschiedliche Rekombinationsraten halten besonders egoistische Gene im Zaum
18.01.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ALMA beginnt Beobachtung der Sonne

18.01.2017 | Physik Astronomie

Textiler Hochwasserschutz erhöht Sicherheit

18.01.2017 | Architektur Bauwesen

Neues Forschungsspecial zu Meeren, Ozeanen und Gewässern

18.01.2017 | Geowissenschaften