Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Pflanzenproteine am Drücker

07.07.2005


Pflanzliche Signalübertragung durch Rop-Proteine. Auf die Zelle einwirkende Signale werden über Rezeptoren der Zellmembran an Guaninnukleotid-Austauschfaktoren (GEFs) weitergeleitet. Diese katalysieren den Austausch von GDP gegen GTP bei den Rop-Proteinen und überführen diese dadurch in den aktiven Zustand. Aktive Rop-Moleküle wiederum interagieren mit Effektoren, die zahlreiche Lebensprozesse der Pflanze beeinflussen. Im Hintergrund ist eine Blüte der Pflanze Arabidopsis thaliana zu sehen, der Pflanze, die für die vorliegende Studie verwendet wurde. Bild: Christoph Thomas, Max-Planck-Institut für molekulare Physiologie; elektronenmikroskopische Aufnahme: Jürgen Berger, MPI für Entwicklungsbiologie


Dortmunder Max-Planck-Forscher haben jene Proteine entdeckt, die molekulare Schalter in pflanzlichen Signalwegen aktivieren


Rop-Proteine sind molekulare Kontrollpunkte in Pflanzen, die deren Wachstum, Entwicklung, Fortpflanzung und Anpassung an zahlreiche Umwelt- und Stressfaktoren steuern. Die Aktivierung dieser molekularen Schalterproteine ist entscheidend für die Weiterleitung einer Vielzahl von Signalen, auf die die Pflanze im Laufe ihres Lebens reagieren muss. Wissenschaftler des Max-Planck-Instituts für molekulare Physiologie in Dortmund haben jetzt jene Proteine entdeckt, die diese molekularen Schalter aktivieren und lebenswichtige pflanzenphysiologische Prozesse in Gang setzen. Dabei stellte sich heraus, dass sich diese Pflanzenproteine deutlich von den Aktivierungsproteinen für vergleichbare molekulare Schalter in Tieren und Pilzen unterscheiden und sich vermutlich erst später in der Evolution herausgebildet haben. Die entdeckten Proteine stellen wahrscheinlich das essentielle Bindeglied zwischen Rezeptormolekülen an der Zelloberfläche und den molekularen Schaltern dar und machen so die Verarbeitung vieler externer Signale in pflanzlichen Zellen erst möglich (Nature, 26. Juni 2005).

Das Leben einer Pflanze wird von sehr vielen unterschiedlichen Reizen aus ihrem Körperinneren sowie der Umgebung beeinflusst. Ein komplexes System zur Signalaufnahme registriert diese eigenen und fremden Signale und verarbeitet diese in biochemischen Reaktionsketten, die das ursprüngliche Signal kaskadenartig weiterleiten, hochgradig verstärken und schließlich ganz spezifische Reaktionen in einer Zelle auslösen. Als Kontrollpunkte dienen in vielen Signalwegen der Pflanze kleine Eiweißmoleküle, die Rop-Proteine. Sie vermitteln als molekulare Schalter die Signalübertragung.


Ähnliche Schalterproteine kennt man auch von Tieren und Pilzen. Diese Rho-Proteine sind eine Untergruppe der Ras-Superfamilie kleiner GTP-bindender Proteine (G-Proteine), die eine Vielzahl von physiologischen Prozessen beeinflussen. Ihre Schalterfunktion beruht darauf, dass entweder das Nukleotid GDP oder GTP an sie gebunden ist. Im GDP-gebundenen Zustand sind die Proteine inaktiv. Im GTP-gebundenen, aktiven Zustand binden sie an Effektorproteine und leiten auf diese Weise die Signale weiter.

Der Übergang zwischen dem inaktiven, GDP-gebundenen Zustand und dem aktiven, GTP-gebundenen Zustand wird durch Regulatoren kontrolliert, die direkt und spezifisch mit den kleinen G-Proteinen wechselwirken. Guaninnukleotid-Austauschfaktoren (GEFs) bewirken als positive Regulatoren die Freisetzung von GDP, erleichtern die Bindung von GTP und aktivieren somit die G-Proteine. Die Spaltung von GTP zu GDP durch die kleinen G-Proteine wird durch GTPase-aktivierende Proteine (GAPs) stimuliert. Diese GAPs inaktivieren somit als negative Regulatoren das Schalterprotein.

Untersuchungen der letzten Jahre hatten gezeigt, dass die pflanzlichen Schalterproteine (Rops) als Mitglieder der Rho-Familie eine zentrale Rolle in physiologischen Prozessen spielen, da sie das pflanzliche Wachstum und die Entwicklung beeinflussen, die Befruchtung steuern und die Reaktionen der Pflanze auf zahlreiche Umwelt- und Stressfaktoren (z. B. Schädlingsbefall) kontrollieren. Die dabei auf die Pflanze einwirkenden Signale werden häufig durch Rezeptor-Proteine an der Zelloberfläche wahrgenommen und in das Zellinnere übermittelt. Diese Signale können dort jedoch nur dann einen Effekt bewirken, wenn der molekulare Schalter durch GEF-Proteine betätigt, also aktiviert wird. Lange Zeit war jedoch völlig unklar, wie die Rop-Proteine aktiviert werden, da in Pflanzen die notwendigen Austauschfaktoren für Rops nicht bekannt waren.

Die Dortmunder Max-Planck-Forscher haben nun das Rätsel der Rop-Aktivierung gelöst und eine neue Familie von Proteinen in Pflanzen identifiziert, die als Rop-spezifische Austauschfaktoren (RopGEFs) funktionieren.

Obwohl G-Proteine und ihre Regulatoren im allgemeinen als konserviert gelten, d.h. ähnliche (homologe) Proteine in Tieren, Pilzen und Pflanzen zu finden sind, weisen die pflanzlichen RopGEF-Proteine interessanterweise keinerlei Übereinstimmung mit Proteinen aus den anderen Reichen höherer Organismen auf. Ihnen gegenüber stehen die völlig anderen RhoGEFs der Tiere und Pilze, die wiederum keine Entsprechung im Pflanzenreich finden. Diese Tatsache lässt die Dortmunder Arbeitsgruppe vermuten, dass sich die GEFs als Aktivatoren für die Rho-Familie kleiner GTPasen während der Evolution als "späte Erfindung" erst nach der Trennung des Pflanzenreichs von Pilzen und Tieren entwickelt haben.

Bei weiteren Vergleichen der neuen RopGEFs mit Datenbankeinträgen stellten die Wissenschaftler weiterhin fest, dass einige Vertreter dieser Proteinfamilie direkt an Rezeptorproteine binden. Die Forscher aus Dortmund schlagen daher für Rop-abhängige Prozesse in Pflanzen eine geschlossene Reaktionskette vor (vgl. Abb. 1): Danach können eingehende Signale über membranständige Rezeptoren wahrgenommen und an RopGEFs weitergeleitet werden, die ihrerseits das Schalterprotein Rop aktivieren und auf diese Weise multiple Signalketten in Gang setzen.

Die Ergebnisse der Dortmunder Studie tragen entscheidend zum Verständnis der pflanzlichen Signalübertragung bei und bieten möglicherweise neue Ansätze, in lebenswichtige Prozesse von Pflanzen, wie zum Beispiel in die Abwehr von Schädlingen, regulierend einzugreifen.

Dieses Projekt wurde unterstützt durch die Max-Planck-Gesellschaft, die Deutsche Forschungsgemeinschaft als Teilprojekt des Schwerpunktprogramms 1150 "Signalwege zum Zytoskelett und bakterielle Pathogenität" sowie durch den Boehringer Ingelheim Fonds.

Dr. Antje Berken | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: G-Proteine Pflanze Pilze Protein Regulator Schalter Schalterprotein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie