Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Baustellenverkehr in der Zelle: Der Aufbau des Spleißosoms

06.07.2005


Wie sich die Maschinerie für das Spleißen genau anordnet und warum Signale der Messenger-RNA nötig sind für die Protein-Produktion


Die Messenger-RNA (orange) wird durch RNA-Polymerase synthetisiert, während sie an einem Gen (schwarze Linie) entlangwandert. Dabei wirken verschiedenste Komponenten: Der Cap-Binding Complex (hellgrün) und die verschiedenen snRNPs (rot, blau, grün, lila). Ex1 und Ex2 sind die Exons, die Abschnitte der Messenger-RNA, die die Proteine kodieren. Den Vorgang des Spleißens sieht man hier als RNA-Schlaufe. Bild: MPI für Molekulare Zellbiologie und Genetik



Die Maschinerie, die in der Zelle den Vorgang des Spleißens erledigt, setzt sich selbst aus ungefähr 250 Proteinen zusammen. Wie aber arbeitet und funktioniert diese Maschinerie, das Spleißosom, genau? Ordnet es all seine Bestandteile nacheinander an oder besteht es aus einem Ganzen? Werden auf der Baustelle der Zelle Materialien - wie Ziegel, Fenster, Türen - einzeln für das Spleißen angeliefert oder kommt das Spleißosom als Fertighaus? Mitarbeiter der Forschungsgruppe von Karla Neugebauer am Max-Planck-Institut für Molekulare Zellbiologie und Genetik (MPI-CBG) haben auf diese Fragen nun eine Antwort gefunden: Das Spleißosom ordnet sich nacheinander an. Zudem haben die Dresdner Forscher beobachten können, dass die Messenger-RNA, ähnlich einem Bauplan, die Ankunft der Bestandteile des Spleißosoms durch Signale koordiniert. (Molecular Cell, 01. Juli 2005).



Damit Zellen Proteine produzieren können, müssen zunächst Gene zu einer Messenger-RNA (mRNA) umgeschrieben werden, welche dann wiederum als Bauplan für die Proteine dient. Die Gene jedoch werden durch nicht kodierende Sequenzen, so genannte Introns, unterbrochen. Diese müssen aus der mRNA entfernt werden.

Genau dieser Vorgang nennt sich Spleißen. Bisher war unklar, wie dieses Spleißen in der lebenden Zelle genau abläuft. Um dies herauszufinden, wurden Zwischenprodukte im Spleißosomaufbau in lebenden Hefezellen quervernetzt, gereinigt und anschließend analysiert. Vorher existierten Hinweise, dass sich die fünf Hauptbestandteile des Spleißosoms, so genannte snRNPs, gemeinsam anordnen. Diese Hinweise konnten nicht bestätigt werden.

Zusätzlich fand das Team heraus, dass ein Signal, der Cap Binding Complex (CBC), die Anordnung der Spleißosombestandteile reguliert. "Nun haben wir ein weiteres Beispiel dafür, wie zelluläre Maschinerien funktionieren", sagt Karla Neugebauer und fügt hinzu: "Beispielsweise wussten wir, dass das Ribosom, zuständig für die Umsetzung der mRNA in Proteine, ähnlich groß und komplex wie das Spleißosom ist. Im Gegensatz zum Spleißosom wird es aber als komplett montierte Maschine mit allen Einzelteilen angeliefert. Die Zelle nutzt also für diese verschiedenen Schritte und Probleme durchaus unterschiedliche Lösungsstrategien".

In der Tat ist das Spleißosom für das Funktionieren unseres Organismus extrem wichtig - ein Fehler beim Herausschneiden der Introns kann fatale Folgen haben und Ursache für Krankheiten sein. Je besser wir diese Vorgänge verstehen, desto besser können wir Fehlfunktionen abstellen.

Karla Neugebauer | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-cbg.de
http://www.mpg.de

Weitere Berichte zu: Messenger-RNA Protein Spleißen Spleißosom Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie