Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Baustellenverkehr in der Zelle: Der Aufbau des Spleißosoms

06.07.2005


Wie sich die Maschinerie für das Spleißen genau anordnet und warum Signale der Messenger-RNA nötig sind für die Protein-Produktion


Die Messenger-RNA (orange) wird durch RNA-Polymerase synthetisiert, während sie an einem Gen (schwarze Linie) entlangwandert. Dabei wirken verschiedenste Komponenten: Der Cap-Binding Complex (hellgrün) und die verschiedenen snRNPs (rot, blau, grün, lila). Ex1 und Ex2 sind die Exons, die Abschnitte der Messenger-RNA, die die Proteine kodieren. Den Vorgang des Spleißens sieht man hier als RNA-Schlaufe. Bild: MPI für Molekulare Zellbiologie und Genetik



Die Maschinerie, die in der Zelle den Vorgang des Spleißens erledigt, setzt sich selbst aus ungefähr 250 Proteinen zusammen. Wie aber arbeitet und funktioniert diese Maschinerie, das Spleißosom, genau? Ordnet es all seine Bestandteile nacheinander an oder besteht es aus einem Ganzen? Werden auf der Baustelle der Zelle Materialien - wie Ziegel, Fenster, Türen - einzeln für das Spleißen angeliefert oder kommt das Spleißosom als Fertighaus? Mitarbeiter der Forschungsgruppe von Karla Neugebauer am Max-Planck-Institut für Molekulare Zellbiologie und Genetik (MPI-CBG) haben auf diese Fragen nun eine Antwort gefunden: Das Spleißosom ordnet sich nacheinander an. Zudem haben die Dresdner Forscher beobachten können, dass die Messenger-RNA, ähnlich einem Bauplan, die Ankunft der Bestandteile des Spleißosoms durch Signale koordiniert. (Molecular Cell, 01. Juli 2005).



Damit Zellen Proteine produzieren können, müssen zunächst Gene zu einer Messenger-RNA (mRNA) umgeschrieben werden, welche dann wiederum als Bauplan für die Proteine dient. Die Gene jedoch werden durch nicht kodierende Sequenzen, so genannte Introns, unterbrochen. Diese müssen aus der mRNA entfernt werden.

Genau dieser Vorgang nennt sich Spleißen. Bisher war unklar, wie dieses Spleißen in der lebenden Zelle genau abläuft. Um dies herauszufinden, wurden Zwischenprodukte im Spleißosomaufbau in lebenden Hefezellen quervernetzt, gereinigt und anschließend analysiert. Vorher existierten Hinweise, dass sich die fünf Hauptbestandteile des Spleißosoms, so genannte snRNPs, gemeinsam anordnen. Diese Hinweise konnten nicht bestätigt werden.

Zusätzlich fand das Team heraus, dass ein Signal, der Cap Binding Complex (CBC), die Anordnung der Spleißosombestandteile reguliert. "Nun haben wir ein weiteres Beispiel dafür, wie zelluläre Maschinerien funktionieren", sagt Karla Neugebauer und fügt hinzu: "Beispielsweise wussten wir, dass das Ribosom, zuständig für die Umsetzung der mRNA in Proteine, ähnlich groß und komplex wie das Spleißosom ist. Im Gegensatz zum Spleißosom wird es aber als komplett montierte Maschine mit allen Einzelteilen angeliefert. Die Zelle nutzt also für diese verschiedenen Schritte und Probleme durchaus unterschiedliche Lösungsstrategien".

In der Tat ist das Spleißosom für das Funktionieren unseres Organismus extrem wichtig - ein Fehler beim Herausschneiden der Introns kann fatale Folgen haben und Ursache für Krankheiten sein. Je besser wir diese Vorgänge verstehen, desto besser können wir Fehlfunktionen abstellen.

Karla Neugebauer | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-cbg.de
http://www.mpg.de

Weitere Berichte zu: Messenger-RNA Protein Spleißen Spleißosom Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demenz: Neue Substanz verbessert Gehirnfunktion
28.07.2017 | Technische Universität München

nachricht Mit einem Flow-Reaktor umweltschonend Wirkstoffe erzeugen
28.07.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise