Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Baustellenverkehr in der Zelle: Der Aufbau des Spleißosoms

06.07.2005


Wie sich die Maschinerie für das Spleißen genau anordnet und warum Signale der Messenger-RNA nötig sind für die Protein-Produktion


Die Messenger-RNA (orange) wird durch RNA-Polymerase synthetisiert, während sie an einem Gen (schwarze Linie) entlangwandert. Dabei wirken verschiedenste Komponenten: Der Cap-Binding Complex (hellgrün) und die verschiedenen snRNPs (rot, blau, grün, lila). Ex1 und Ex2 sind die Exons, die Abschnitte der Messenger-RNA, die die Proteine kodieren. Den Vorgang des Spleißens sieht man hier als RNA-Schlaufe. Bild: MPI für Molekulare Zellbiologie und Genetik



Die Maschinerie, die in der Zelle den Vorgang des Spleißens erledigt, setzt sich selbst aus ungefähr 250 Proteinen zusammen. Wie aber arbeitet und funktioniert diese Maschinerie, das Spleißosom, genau? Ordnet es all seine Bestandteile nacheinander an oder besteht es aus einem Ganzen? Werden auf der Baustelle der Zelle Materialien - wie Ziegel, Fenster, Türen - einzeln für das Spleißen angeliefert oder kommt das Spleißosom als Fertighaus? Mitarbeiter der Forschungsgruppe von Karla Neugebauer am Max-Planck-Institut für Molekulare Zellbiologie und Genetik (MPI-CBG) haben auf diese Fragen nun eine Antwort gefunden: Das Spleißosom ordnet sich nacheinander an. Zudem haben die Dresdner Forscher beobachten können, dass die Messenger-RNA, ähnlich einem Bauplan, die Ankunft der Bestandteile des Spleißosoms durch Signale koordiniert. (Molecular Cell, 01. Juli 2005).



Damit Zellen Proteine produzieren können, müssen zunächst Gene zu einer Messenger-RNA (mRNA) umgeschrieben werden, welche dann wiederum als Bauplan für die Proteine dient. Die Gene jedoch werden durch nicht kodierende Sequenzen, so genannte Introns, unterbrochen. Diese müssen aus der mRNA entfernt werden.

Genau dieser Vorgang nennt sich Spleißen. Bisher war unklar, wie dieses Spleißen in der lebenden Zelle genau abläuft. Um dies herauszufinden, wurden Zwischenprodukte im Spleißosomaufbau in lebenden Hefezellen quervernetzt, gereinigt und anschließend analysiert. Vorher existierten Hinweise, dass sich die fünf Hauptbestandteile des Spleißosoms, so genannte snRNPs, gemeinsam anordnen. Diese Hinweise konnten nicht bestätigt werden.

Zusätzlich fand das Team heraus, dass ein Signal, der Cap Binding Complex (CBC), die Anordnung der Spleißosombestandteile reguliert. "Nun haben wir ein weiteres Beispiel dafür, wie zelluläre Maschinerien funktionieren", sagt Karla Neugebauer und fügt hinzu: "Beispielsweise wussten wir, dass das Ribosom, zuständig für die Umsetzung der mRNA in Proteine, ähnlich groß und komplex wie das Spleißosom ist. Im Gegensatz zum Spleißosom wird es aber als komplett montierte Maschine mit allen Einzelteilen angeliefert. Die Zelle nutzt also für diese verschiedenen Schritte und Probleme durchaus unterschiedliche Lösungsstrategien".

In der Tat ist das Spleißosom für das Funktionieren unseres Organismus extrem wichtig - ein Fehler beim Herausschneiden der Introns kann fatale Folgen haben und Ursache für Krankheiten sein. Je besser wir diese Vorgänge verstehen, desto besser können wir Fehlfunktionen abstellen.

Karla Neugebauer | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-cbg.de
http://www.mpg.de

Weitere Berichte zu: Messenger-RNA Protein Spleißen Spleißosom Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik