Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kontrolle über das Stammzellprogramm

05.07.2005


Kontrolliertes Umprogrammieren von Stammzellen durch Kulturbedingungen / Max-Planck-Wissenschaftler mit neuem Konzept für embryonale Stammzellen


Der Kern einer Körperzelle wird in eine Eizelle injiziert. Forscher bezeichnen das als somatischen Kerntransfer. Bild: Max-Planck-Institut für molekulare Biomedizin


Entwicklung klonaler Mausembryonen nach Zellkerntransfer vom 2-Zell-, 4-Zell- und 8-Zell-Stadium über die Morula bis zur Blastozyste (v. l.) Bild: Max-Planck-Institut für molekulare Biomedizin



Pluripotente Stammzellen lassen sich in alle Zelltypen des Körpers differenzieren. Im gesunden menschlichen Körper konnten sie bislang allerdings nicht nachgewiesen werden. Ihre Herleitung von körpergleichen pluripotenten Zellen über das Verfahren des Kerntransfers in Eizellen wäre sehr wertvoll für die Medizin. Der Kerntransfer in menschliche Eizellen wird allerdings kontrovers diskutiert und ist in vielen europäischen Ländern verboten. Um das Potenzial dieses Verfahrens abschätzen zu können, muss in erster Linie folgende Frage beantwortet werden: Ist das Ergebnis des Zellkerntransfers in Eizellen zufällig oder lässt es sich experimentell kontrollieren? Mit ihren aktuellen Untersuchungen an Mausklonen liefern Wissenschaftler vom Max-Planck-Institut für molekulare Biomedizin in Münster erste Hinweise, dass das Entwicklungspotenzial von Klonen stark von den Kulturbedingungen abhängt und der Prozess des Umprogrammierens zu pluripotenten Stammzellen außerordentlich variabel ist.



Auf regenerativen Therapien durch Zellersatz ruhen viele Hoffnungen von Patienten. Ziel ist es, beschädigte Organe und Gewebe durch Stammzellen in ihrer Funktion wiederherzustellen oder zumindest zu verbessern. Dabei wäre es von Vorteil, Zellen und Gewebe verwenden zu können, die mit dem Patienten genetisch identisch und damit immunologisch gut verträglich sind. Pluripotente Stammzellen sind zwar zelluläre Alleskönner, konnten aber bislang nur in den allerersten embryonalen Stadien nachgewiesen werden und stehen daher nicht für autogene Therapien zur Verfügung. Eine Möglichkeit, solche Zellen zu gewinnen, liegt im somatischen Kerntransfer. Dabei wird der Kern einer vom Patienten stammenden normalen Körperzelle in eine zuvor entkernte Eizelle gebracht. Diese beginnt sich nach einem Stimulus zu teilen und wächst zu einer Blastozyste, die man in eine Kulturschale überführt. Die auswachsenden embryonalen Stammzellen werden anschließend dazu gebracht, sich in bestimmte Zelltypen, beispielsweise Nerven- oder Muskelzellen, zu entwickeln.

Durch die Übertragung des Zellkerns in die Eizelle "verjüngt" sich der Zustand des Kerns von einer ausdifferenzierten Körperzelle hin zu einer pluripotenten Stammzelle. Die Forscher bezeichnen diesen Prozess als Reprogrammierung. Bei einer Körperzelle wird nur ein bestimmter Satz von Genen abgelesen; viele andere Gene sind abgeschaltet. Um die Zelle wieder in einen frühen Zustand zurückzuversetzen, muss das Ablesen der Gene, die Genexpression, quasi wieder auf die Anfangseinstellung zurückgesetzt werden. Bisher waren Forscher der Ansicht, dass dies innerhalb der ersten Stunden nach Injektion des Zellkerns in die Eizelle geschieht. Das Zurücksetzen sollte rein zufällig erfolgen; seine Natur ist unbekannt und die beteiligten Faktoren liegen - wie Untersuchungen aus der Arbeitsgruppe von Hans Schöler am Max-Planck-Institut für molekulare Biomedizin in Münster nahe legen [1] - nicht im Cytoplasma der Eizelle, sondern in deren Kern.

Michele Boiani und seine Kollegen vom Max-Planck-Institut sind der Frage nachgegangen, wie der Prozess der Reprogrammierung nach dem Kerntransfer abläuft, ob er vollständig ist oder, falls dies nicht der Fall ist, ob es möglich ist, ihn experimentell zu verbessern und zu kontrollieren. Eine solches Verständnis wäre nicht nur aus Sicht der Grundlagenforschung hochinteressant, sondern auch für eine klinische Anwendung von Vorteil. Angesichts der jüngsten Erfolge koreanischer Stammzellforscher ist man beim somatischen Kerntransfer einen großen Schritt vorangekommen: Noch vor einem Jahr benötigten die koreanischen Forscher 242 Eizellen bzw. 30 Embryonen (also Blastozysten), um eine einzige menschliche Stammzelllinie herzustellen. Vor allem diese mangelnde Effizienz des Verfahrens, die Tatsache, dass die große Mehrzahl der Klone frühzeitig abstirbt oder aber erhebliche Wachstumsanomalitäten aufweist, ließen am therapeutischen Potenzial dieses Verfahrens zweifeln. Mittlerweile ist es den Koreanern aber durch äußerst präzise und hoch selektive Prozeduren gelungen, in denen beispielsweise nur das beste biologische Material für die Experimente ausgewählt wurde, aus lediglich zehn Eizellen bzw. drei Blastozysten eine embryonale Stammzelllinie zu gewinnen. Damit ist zumindest eines der Argumente gegen das therapeutische Klonen - die mangelnde Effizienz des Verfahrens - hinfällig.

Trotzdem bleiben nach wie vor Unwägbarkeiten. Bereits vor drei Jahren publizierten Wissenschaftler Experimente am Mausmodell: Danach hängt die Entwicklung von Klonmäusen maßgeblich davon ab, welcher Spenderkern eingesetzt wird. Setzten die Wissenschaftler so genannte Cumulus-Zellkerne aus Ovarien ein, so wurden die Klonmäuse besonders fett. Handelte es sich um so genannte Sertoli-Zellen aus den Hoden von Mausmännchen, so starben die Mäuse dagegen zu einem ungewöhnlich frühen Zeitpunkt. Wenn aber Klontiere Anomalitäten während des Heranwachsens zeigen, muss man dann nicht auch bei den embryonalen Stammzellen, nachdem sie sich etwa zu Nerven- oder Muskelzellen entwickelt haben, mit Problemen rechnen?

Vor diesem Hintergrund gewinnt ein tieferes Verständnis der Reprogrammierung besonderes Gewicht. Die Max-Planck-Forscher konnten zeigen, dass klonierte Mausblastozysten von genetisch identischen Kernspenderzellen Unterschiede in der Genexpression zeigen, die nicht zufällig sind, sondern durch unterschiedliche Kulturbedingungen gesteuert werden: Sowohl die Rate der Blastozysten-Bildung, als auch die Verteilung der Boten-RNA (mRNA) des pluripotenten Stammzellmarkers Oct4 in den klonalen Blastozysten waren davon abhängig. Das aber bedeutet, dass der Prozess des Reprogrammierens nicht auf den Spenderkern beschränkt ist und sich auch über die ersten Zellteilungen hinaus fortsetzt.

"Unsere Beobachtungen zeigen, dass für die Entwicklung bis zum Blastozystenstadium keine vollständige Reprogrammierung notwendig ist. Für den Erfolg des Prozesses ist unter anderem der Ursprung des Spenderkerns ausschlaggebend. Dennoch können wir die Entwicklung geklonter Blastozysten und die Reprogrammierung durch die Wahl geeigneter Kulturbedingungen beeinflussen", erklärt Michele Boiani. "Embryonale Stammzellen sind offenbar aber nicht mit der inneren Zellmasse der Blastozyste gleichzusetzen. Anhand der Oct4-Expression in der Blastozyste können wir Aussagen über die Effizienz der Gewinnung embryonaler Stammzellen machen. Es ist allerdings nicht möglich, die fötale Entwicklung geklonter Embryonen vorherzusagen, geschweige denn, sie zu verbessern."

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Blastozysten Eizelle Kerntransfer Prozess Reprogrammierung Stammzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie