Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kontrolle über das Stammzellprogramm

05.07.2005


Kontrolliertes Umprogrammieren von Stammzellen durch Kulturbedingungen / Max-Planck-Wissenschaftler mit neuem Konzept für embryonale Stammzellen


Der Kern einer Körperzelle wird in eine Eizelle injiziert. Forscher bezeichnen das als somatischen Kerntransfer. Bild: Max-Planck-Institut für molekulare Biomedizin


Entwicklung klonaler Mausembryonen nach Zellkerntransfer vom 2-Zell-, 4-Zell- und 8-Zell-Stadium über die Morula bis zur Blastozyste (v. l.) Bild: Max-Planck-Institut für molekulare Biomedizin



Pluripotente Stammzellen lassen sich in alle Zelltypen des Körpers differenzieren. Im gesunden menschlichen Körper konnten sie bislang allerdings nicht nachgewiesen werden. Ihre Herleitung von körpergleichen pluripotenten Zellen über das Verfahren des Kerntransfers in Eizellen wäre sehr wertvoll für die Medizin. Der Kerntransfer in menschliche Eizellen wird allerdings kontrovers diskutiert und ist in vielen europäischen Ländern verboten. Um das Potenzial dieses Verfahrens abschätzen zu können, muss in erster Linie folgende Frage beantwortet werden: Ist das Ergebnis des Zellkerntransfers in Eizellen zufällig oder lässt es sich experimentell kontrollieren? Mit ihren aktuellen Untersuchungen an Mausklonen liefern Wissenschaftler vom Max-Planck-Institut für molekulare Biomedizin in Münster erste Hinweise, dass das Entwicklungspotenzial von Klonen stark von den Kulturbedingungen abhängt und der Prozess des Umprogrammierens zu pluripotenten Stammzellen außerordentlich variabel ist.



Auf regenerativen Therapien durch Zellersatz ruhen viele Hoffnungen von Patienten. Ziel ist es, beschädigte Organe und Gewebe durch Stammzellen in ihrer Funktion wiederherzustellen oder zumindest zu verbessern. Dabei wäre es von Vorteil, Zellen und Gewebe verwenden zu können, die mit dem Patienten genetisch identisch und damit immunologisch gut verträglich sind. Pluripotente Stammzellen sind zwar zelluläre Alleskönner, konnten aber bislang nur in den allerersten embryonalen Stadien nachgewiesen werden und stehen daher nicht für autogene Therapien zur Verfügung. Eine Möglichkeit, solche Zellen zu gewinnen, liegt im somatischen Kerntransfer. Dabei wird der Kern einer vom Patienten stammenden normalen Körperzelle in eine zuvor entkernte Eizelle gebracht. Diese beginnt sich nach einem Stimulus zu teilen und wächst zu einer Blastozyste, die man in eine Kulturschale überführt. Die auswachsenden embryonalen Stammzellen werden anschließend dazu gebracht, sich in bestimmte Zelltypen, beispielsweise Nerven- oder Muskelzellen, zu entwickeln.

Durch die Übertragung des Zellkerns in die Eizelle "verjüngt" sich der Zustand des Kerns von einer ausdifferenzierten Körperzelle hin zu einer pluripotenten Stammzelle. Die Forscher bezeichnen diesen Prozess als Reprogrammierung. Bei einer Körperzelle wird nur ein bestimmter Satz von Genen abgelesen; viele andere Gene sind abgeschaltet. Um die Zelle wieder in einen frühen Zustand zurückzuversetzen, muss das Ablesen der Gene, die Genexpression, quasi wieder auf die Anfangseinstellung zurückgesetzt werden. Bisher waren Forscher der Ansicht, dass dies innerhalb der ersten Stunden nach Injektion des Zellkerns in die Eizelle geschieht. Das Zurücksetzen sollte rein zufällig erfolgen; seine Natur ist unbekannt und die beteiligten Faktoren liegen - wie Untersuchungen aus der Arbeitsgruppe von Hans Schöler am Max-Planck-Institut für molekulare Biomedizin in Münster nahe legen [1] - nicht im Cytoplasma der Eizelle, sondern in deren Kern.

Michele Boiani und seine Kollegen vom Max-Planck-Institut sind der Frage nachgegangen, wie der Prozess der Reprogrammierung nach dem Kerntransfer abläuft, ob er vollständig ist oder, falls dies nicht der Fall ist, ob es möglich ist, ihn experimentell zu verbessern und zu kontrollieren. Eine solches Verständnis wäre nicht nur aus Sicht der Grundlagenforschung hochinteressant, sondern auch für eine klinische Anwendung von Vorteil. Angesichts der jüngsten Erfolge koreanischer Stammzellforscher ist man beim somatischen Kerntransfer einen großen Schritt vorangekommen: Noch vor einem Jahr benötigten die koreanischen Forscher 242 Eizellen bzw. 30 Embryonen (also Blastozysten), um eine einzige menschliche Stammzelllinie herzustellen. Vor allem diese mangelnde Effizienz des Verfahrens, die Tatsache, dass die große Mehrzahl der Klone frühzeitig abstirbt oder aber erhebliche Wachstumsanomalitäten aufweist, ließen am therapeutischen Potenzial dieses Verfahrens zweifeln. Mittlerweile ist es den Koreanern aber durch äußerst präzise und hoch selektive Prozeduren gelungen, in denen beispielsweise nur das beste biologische Material für die Experimente ausgewählt wurde, aus lediglich zehn Eizellen bzw. drei Blastozysten eine embryonale Stammzelllinie zu gewinnen. Damit ist zumindest eines der Argumente gegen das therapeutische Klonen - die mangelnde Effizienz des Verfahrens - hinfällig.

Trotzdem bleiben nach wie vor Unwägbarkeiten. Bereits vor drei Jahren publizierten Wissenschaftler Experimente am Mausmodell: Danach hängt die Entwicklung von Klonmäusen maßgeblich davon ab, welcher Spenderkern eingesetzt wird. Setzten die Wissenschaftler so genannte Cumulus-Zellkerne aus Ovarien ein, so wurden die Klonmäuse besonders fett. Handelte es sich um so genannte Sertoli-Zellen aus den Hoden von Mausmännchen, so starben die Mäuse dagegen zu einem ungewöhnlich frühen Zeitpunkt. Wenn aber Klontiere Anomalitäten während des Heranwachsens zeigen, muss man dann nicht auch bei den embryonalen Stammzellen, nachdem sie sich etwa zu Nerven- oder Muskelzellen entwickelt haben, mit Problemen rechnen?

Vor diesem Hintergrund gewinnt ein tieferes Verständnis der Reprogrammierung besonderes Gewicht. Die Max-Planck-Forscher konnten zeigen, dass klonierte Mausblastozysten von genetisch identischen Kernspenderzellen Unterschiede in der Genexpression zeigen, die nicht zufällig sind, sondern durch unterschiedliche Kulturbedingungen gesteuert werden: Sowohl die Rate der Blastozysten-Bildung, als auch die Verteilung der Boten-RNA (mRNA) des pluripotenten Stammzellmarkers Oct4 in den klonalen Blastozysten waren davon abhängig. Das aber bedeutet, dass der Prozess des Reprogrammierens nicht auf den Spenderkern beschränkt ist und sich auch über die ersten Zellteilungen hinaus fortsetzt.

"Unsere Beobachtungen zeigen, dass für die Entwicklung bis zum Blastozystenstadium keine vollständige Reprogrammierung notwendig ist. Für den Erfolg des Prozesses ist unter anderem der Ursprung des Spenderkerns ausschlaggebend. Dennoch können wir die Entwicklung geklonter Blastozysten und die Reprogrammierung durch die Wahl geeigneter Kulturbedingungen beeinflussen", erklärt Michele Boiani. "Embryonale Stammzellen sind offenbar aber nicht mit der inneren Zellmasse der Blastozyste gleichzusetzen. Anhand der Oct4-Expression in der Blastozyste können wir Aussagen über die Effizienz der Gewinnung embryonaler Stammzellen machen. Es ist allerdings nicht möglich, die fötale Entwicklung geklonter Embryonen vorherzusagen, geschweige denn, sie zu verbessern."

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Blastozysten Eizelle Kerntransfer Prozess Reprogrammierung Stammzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise