Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Intermembrane space odyssey" - Ein neuer alter Weg führt Proteine in Mitochondrien

30.06.2005


Proteine können nur mit ihrer jeweils spezifischen dreidimensionalen Struktur funktionieren. Meist findet die Faltung unter Verbrauch von Energie in Form von ATP statt. Privatdozent Dr. Johannes Herrmann und sein Team vom Adolf-Butenandt-Institut für Physiologische Chemie der Ludwig-Maximilians-Universität (LMU) München konnten zeigen, dass in den Mitochondrien, den Kraftwerken der Zelle, eine andere Energiequelle zur Proteinfaltung genutzt wird, nämlich die Oxidation. Wie die Wissenschaftler in der aktuellen Ausgabe des Fachmagazins Cell berichten, nutzen Mitochondrien dabei den Mechanismus der Oxidativen Proteinfaltung, der auch schon aus Bakterien bekannt ist. Von diesen stammen die Mitochondrien entwicklungsgeschichtlich ab. Die aktive Proteinfaltung erlaubt dabei den Mitochondrien, ihre Proteine von ihrer Umgebung, dem Zytosol der Zelle, aufzunehmen und dort zu behalten. "Unsere Ergebnisse zeigen einen bislang völlig unbekannten Transportweg für Proteine in den Intermembranraum von Mitochondrien", so Herrmann. "Das ist ein wichtiger Beitrag zum Verständnis davon, wie Proteine in Zellen von ihrem Bildungsort an ihren Wirkungsort transportiert werden können." Die Bedeutung dieser Ergebnisse wird dadurch unterstrichen, dass das Titelbild der aktuellen Ausgabe von Cell eine Abbildung zu diesem Beitrag zeigt.



Proteine sind die Funktionsträger in den Zellen höherer Organismen. Ihre Funktionsfähigkeit hängt davon ab, dass die eigentlich kettenförmigen Proteinmoleküle ihre spezifischen dreidimensionalen Strukturen einnehmen. Kommt es zu Störungen bei dieser Faltung, können Proteine ihre Aufgaben oft nur mehr eingeschränkt oder gar nicht wahrnehmen. Die Proteinfaltung wird meist durch Hilfsproteine, so genannte Chaperone, unter Verbrauch von Energie vermittelt. ATP ist dabei die universelle "Energiewährung" von Zellen: Die Energie, die in Form von ATP gespeichert wird, kann von Chaperonen direkt genutzt werden, um Proteine nach deren Synthese in ihre jeweilige Struktur zu falten.



Die meisten Bakterien sind von zwei Membranen umschlossen, wobei die äußere große Poren enthält. Der zwischen den Membranen liegende Bereich, der periplasmatische Raum, enthält kein ATP, weil das kleine Molekül leicht durch die Poren nach außen entweichen könnte. "Trotzdem können auch hier Proteine ihre korrekte dreidimensionale Struktur einnehmen - dank Oxidativer Proteinfaltung", berichtet Herrmann. "Der Schlüssel dazu sind so genannte Disulfidbrücken."

Diese starken chemischen Bindungen bilden sich durch Oxidation zwischen zwei Schwefelatomen von Cysteinresten, das sind bestimmte Bausteine von Proteinen. Disulfidbrücken können sich innerhalb eines Proteins oder auch zwischen zwei Proteinen ausbilden. Diese internen Verbrückungen halten Proteine stabil in ihrer dreidimensionalen Struktur, und das Einführen von Disulfidbrücken durch Oxidation kann daher genutzt werden, um Proteine selbst ohne Verbrauch von ATP aktiv zu falten.

Auch in den Zellen höherer Organismen kennt man die Oxidative Proteinfaltung, und zwar im so genannten Endoplasmatischen Retikulum. In diesem Bereich der Zelle werden Proteine gebildet, die nach außen abgegeben werden, wie beispielsweise Antikörper oder Hormone. Das Einfügen von Disulfidbrücken im Endoplasmatischen Retikulum dient der Stabilisierung dieser Proteine, bevor sie die schützende Umgebung der Zelle verlassen. Bislang ging man davon aus, dass außerhalb des Endoplasmatischen Retikulums Proteine generell nicht oxidiert werden, und Disulfidbrücken normalerweise nicht vorkommen. "Wir haben nun entdeckt, dass es auch in den Mitochondrien eine Maschinerie zur Oxidativen Proteinfaltung gibt", so Herrmann. "Die Mitochondrien sind essentielle Zellbestandteile, die unter anderem für den Energiestoffwechsel der Zelle von entscheidender Bedeutung sind. Sie kommen nur in den Zellen höherer Organismen vor und stammen von Bakterien ab, die vor etwa eineinhalb bis zwei Milliarden Jahren in die Vorläufer unserer Zellen aufgenommen wurden. Verblüffenderweise haben sie die Oxidative Proteinfaltung offensichtlich im Laufe der Evolution erhalten."

Die bakteriellen Ahnen der Mitochondrien haben ihren Nachfahren viele Merkmale hinterlassen. Dazu gehören auch die beiden Membranen, die die Mitochondrien umgeben. Die Komponenten zur Oxidativen Proteinfaltung finden sich zwischen diesen beiden Membranen, dem so genannten Intermembranraum. Entwicklungsgeschichtlich entspricht dieser dem periplasmatischen Raum der Bakterien. "Es gibt mehrere Möglichkeiten, wie Proteine in den Intermembranraum transportiert werden können", so Herrmann. "Dabei können sehr unterschiedliche Energiequellen genutzt werden, um Proteine aktiv in die Mitochondrien zu transportieren." Die verschiedenen Transportwege hat Herrmann vor kurzem in einem Übersichtsartikel für das Fachmagazin Trends in Biochemical Sciences zusammengefasst.

Einer dieser Transportwege nutzt die Oxidative Proteinfaltung als treibende Kraft. Wie Herrmann und seine Mitarbeiter zeigen konnten, funktioniert dies nach einem bislang unbekannten Mechanismus: Nach ihrer Bildung außerhalb der Mitochondrien sind Proteine zunächst ungefaltet. Nur so können sie durch die proteindurchlässigen Poren der Außenmembran gelangen. Sobald sie in den Intermembranraum der Mitochondrien gelangen, werden sie durch Oxidation stabil gefaltet und ihr Rücktransport somit verhindert. Der Intermembranraum wirkt damit wie eine Falle, die Proteine durch Oxidative Faltung fängt.

Hauptakteur ist der Importrezeptor Mia40 im Intermembranraum, der ein konserviertes Muster an Cysteinresten enthält. "Durch Erv1, ein Enzym im Intermembranraum, werden diese oxidiert.", so Herrmann. "Wie wir nachweisen konnten, bildet sich dadurch eine Disulfidbrücke in Mia40. Hierdurch wird die Falle gespannt. Kommt ein neu importiertes Protein in die Nähe von Mia40, klappt die Disulfidbrücke zu diesem um, so dass dieses mit Mia40 verbunden ist." In einem zweiten Schritt wird die Disulfidbrücke vollständig auf das Protein übertragen, das hierdurch stabil gefaltet wird.

Die stabile Faltung verhindert, dass das Protein wieder zurück in das Zellinnere gelangen kann. "Der Mechanismus garantiert also einen gerichteten Proteintransport in den Intermembranraum", meint Herrmann. "Die Oxidation ist dabei letztlich die treibende Kraft. Dieser Weg zeigt sehr schön, wie im Laufe der Evolution die von Urzellen aufgenommenen Bakterien so verändert wurden, dass sie ihre Proteine aus der Wirtszelle aufnehmen können."

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de
http://www.med.uni-muenchen.de/physiolchem/herrmann.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten