Mit mathematischen Simulationen Krebsgenen auf der Spur

Siemens-Forscher haben ein mathematisches Rechenmodell entwickelt, mit dem sich krebsauslösende Gene identifizieren lassen. Damit liefert es entscheidende Informationen für die Entwicklung passgenauer Medikamente gegen verschiedene Tumortypen. Das erste Ergebnis der Forschungsarbeit ist die Identifizierung eines Gens, das eine Form der Leukämie auslöst. So lässt sich durch mathematische Simulationen die Anzahl teurer Experimente einschränken. Grafik: Siemens

Siemens-Forscher haben ein mathematisches Rechenmodell entwickelt, mit dem sich krebsauslösende Gene identifizieren lassen. Damit liefert es entscheidende Informationen für die Entwicklung passgenauer Medikamente gegen verschiedene Tumortypen. Das erste Ergebnis der Forschungsarbeit ist die Identifizierung eines Gens, das eine Form der Leukämie auslöst. So lässt sich durch mathematische Simulationen die Anzahl teurer Experimente einschränken.


Nicht jede Krebsart verrät sich direkt durch ein charakteristisches Merkmal. Es existieren unzählige Arten von Tumoren. Und das macht ihre gezielte Behandlung so schwierig. Beim Blutkrebs etwa können verschiedene Typen weißer Blutkörperchen betroffen sein – zum Beispiel die so genannten B- oder die T-Zellen. Für die Mediziner aber ist es entscheidend, die Erkrankung exakt zu erkennen. Nur so können sie diese mit den richtigen Methoden und Medikamenten bekämpfen. Um den Tumor zu identifizieren, werden seit geraumer Zeit so genannte Biochips eingesetzt. Mit diesen wenige Quadratzentimeter großen Plättchen lässt sich die Krebsart anhand ihres genetischen Musters bestimmen. Die Biochips enthalten viele kleine Abschnitte des menschlichen Erbguts DNA. Mit diesen Erbgut-Stücken lässt sich messen, welche Eiweiße in den unterschiedlichen Zellen hergestellt werden. Im Krebsgewebe sind häufig andere Gene aktiv als in normalem Gewebe. Deshalb setzten Forscher solche Chips ein, um Erbsubstanz – die RNA – aus gesundem Gewebe und Tumorgewebe miteinander zu vergleichen. Dazu werden beide Proben mit unterschiedlichen Fluoreszenz-Farbstoffen markiert. Auf dem Chip docken die RNA-Abschnitte an ihre passenden Gegenstücke an. Bestrahlt man den Chip schließlich mit Laserlicht, leuchten die Farbstoffe dort auf, wo die RNA angedockt hat. Das Leuchtmuster des Tumorgewebes unterscheidet sich im Detail also von dem des gesunden Gewebes. Ein Computer kann die Muster auswerten und einen Hinweis auf den genauen Erkrankungstyp geben. Dieses Verfahren ist unter dem Namen Gen-Clustering bereits etabliert.

Sichere Hinweise auf die genetische Ursache der Erkrankung geben diese Biochip-Analysen bislang allerdings kaum. Siemens-Forscher haben deshalb ein mathematisches Modell entwickelt, das die Aktivität der einzelnen Gene zueinander in Beziehung setzt. Mithilfe dieser statistischen Rechenprozedur lassen sich jene Gene dingfest machen, die wahrscheinlich als Auslöser der biochemischen Fehlfunktion in Frage kommen. „Ein solches Gen nennen wir Schlüsselgen“, sagte Privatdozent Dr. Martin Stetter, Projektleiter Bioanalogue Technologies & Solutions von Siemens Corporate Technology in München. „Es beeinflusst die Aktivität anderer Gene ganz entscheidend und bestimmt so, ob die Eiweißchemie in den Körperzellen in die falsche Richtung läuft.“ Ist das Schlüsselgen identifiziert, können sich Pharmaunternehmen auf die Suche nach neuen Wirkstoffen machen, die exakt den Übeltäter bekämpfen. Freilich lässt sich ein solches Schlüsselgen nicht an einem einzigen Biochip-Muster erkennen. Die Mathematiker fütterten ihr Programm „GeneSim“ deshalb mit einer ganzen Reihe von leuchtenden Biochipmustern verschiedener Patienten, die an bestimmten Krebsarten und speziellen Krebstypen leiden. Aus dem Vergleich dieser Muster extrahiert das Programm schließlich die Schlüsselgene und den Wirkungsmechanismus der Gene – den so genannten Genpfad, also Schritt für Schritt jene hintereinander geschalteten Gene, die durch das schadhafte Schlüsselgen in die Irre geleitet werden.

Letztlich ermittelt GeneSim Wahrscheinlichkeiten für die Beziehungen der Gene zueinander nach dem Muster „Mit welcher Wahrscheinlichkeit ist Gen X aktiv, unter der Voraussetzung, dass die Gene Y und Z ebenfalls aktiv sind“. Das Ergebnis ist eine Reihe von mehr oder weniger plausiblen Gen-Abhängigkeiten, die die für bestimmte Krebstypen charakteristischen Fluoreszenz-Muster besser oder schlechter erklären. Wieder und wieder berechnet das System neue Beziehungsnetze, bis es schließlich die plausibelste Lösung – den wahrscheinlichsten genetischen Pfad – gelernt hat.

Zu einem ersten Durchbruch haben diese virtuellen Experimente bereits geführt: Die Forscher identifizierten ein Schlüsselgen, das eine spezielle Form der Leukämie auslöst. „Es handelt sich um den ALL Subtyp E2A-PBX1“, erklärt Stetter. Molekularbiologische Untersuchungen bestätigten die Simulationsergebnisse und wiesen dasselbe Gen als potenziellen Krebsauslöser nach. „In einem siebtel aller ALL-Fälle ist das Gen PBX-1 der entscheidende Faktor. Wenn es durch eine Mutation an anderes Gen geheftet wird, löst es unweigerlich die Leukämie aus.“

Hat GeneSim die Muster erst einmal verstanden, kann es mit den Daten jonglieren. „Wir können zum Beispiel die Gabe von Medikamenten simulieren, die das Schlüsselgen oder andere Stationen im genetischen Pfad gezielt beeinflussen“, sagte Stetter. Das Programm ermittelt dann, wie sich diese lokale Änderung auf das ganze Genmuster auswirkt. „Der Idealfall wäre es, die Zelle so zu beeinflussen, dass ihr Genmuster dem einer gesunden Zelle entspricht.“ Zwar wäre damit noch kein neues Medikament erfunden. Die Forscher wüssten aber, an welcher Stelle ein potenzieller Wirkstoff angreifen sollte, um den Patienten zu heilen. Den Sprung in die Pharmaindustrie hat GeneSim bereits geschafft. Im Rahmen einer Pilotstudie mit einem namhaften Arzneimittel-Hersteller wurde die Plattform erfolgreich eingesetzt.

Media Contact

Guido Weber idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer