Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Forschungsprogramm über Biomolekulare Nano-Maschinen gestartet

03.06.2005


Max-Planck-Institut für Kolloid- und Grenzflächenforschung erhält zwei Mio. Euro für Europäisches Forschungsnetzwerk


Nanoautobahn in Aktion: Zwei Schnappschüsse von mikrometergroßen Teilchen (helle Punkte), die entlang der nahezu parallelen Mikrotubuli transportiert werden (dunkle Linien). Die Mikrotubuli liegen unbeweglich, mit den nach rechts gerichteten Plus-Enden auf dem Glasträger. Die Teilchen werden mit Hilfe von Schrittmotoren, die aufgrund der geringen Größe unsichtbar sind, gezogen. Die Aufnahme des oberen und unteren Schnappschusses liegt 12 Sekunden auseinander. Während dieser Zeit wurden die Teilchen ca. 10 Mikrometer nach rechts bewegt. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung



Ein Forschungsprogramm über "Aktive Biomimetische Systeme", an dem Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung sowie von acht weiteren Forschungseinrichtungen in Deutschland, Frankreich, den Niederlanden und Italien beteiligt sind, erhält eine Förderung der Europäischen Kommission von 2 Mio. Euro. Im Rahmen eines "Specific Targeted Research Project (STREP)" untersuchen die Forscher biomolekulare Nano-Maschinen, also gerichtet wachsende Filamente bzw molekulare Schrittmotoren. Diese Strukturen sind in der Lage, Schub- bzw Zugkräfte in der Nanowelt zu erzeugen. Die Wissenschaftler erforschen jene molekularen Mechanismen, die genau diesen Kräften zugrunde liegen. Darüber hinaus sollen Möglichkeiten gezeigt werden, wie man solche molekularen Maschinen in Nano- und Mikrosysteme integrieren kann. Der europäische Forschungsverbund wird von Prof. Reinhard Lipowsky koordiniert und ist am 1. Mai 2005 gestartet.



Biomimetische Systeme sind Modelle, die bestimmte Aspekte biologischer Organismen nachahmen. So ist es verblüffend, dass biologische Zellen zu dramatischen morphologischen Veränderungen fähig sind. Sie können problemlos ihre Form sehr dünnen Poren anpassen, um sich durch diese hindurch zu zwängen, oder lange "Füße" ausbilden, um über Oberflächen zu kriechen und sich selbst in zwei Tochterzellen teilen. All diese Transformationsprozesse basieren zwei Typen von biomolekularen Nano-Maschinen - längenveränderlichen Filamenten und leistungsfähigen Schrittmotoren.

Beide Maschinen-Typen werden zwar durch Proteine gebildet, benutzen aber ganz unterschiedliche Mechanismen, um Kräfte zu erzeugen. Die Filamente sind stäbchenförmige Strukturen, die nur ca. 10 Nanometer dick, aber viele Mikrometer lang sind. Bei Zugabe von nanometergroßen Bausteinen verlängert sich eines ihrer Enden und erzeugt auf diese Weise Schubkräfte. Schrittmotoren sind Proteine mit zwei identischen "Beinen", jedes mit einer Größe von ca. 10 Nanometern. Kommt ein solcher Motor mit einem Filament in Kontakt, verändert sich seine äußere Form derart, dass an dem Filament Zugkräfte erzeugt werden.

Eine einzelne Nano-Maschine generiert aufgrund ihrer winzigen Größe relativ geringe Kräfte von wenigen Piconewton (10-12 Newton). Doch reagieren solch winzige Maschinen sehr sensibel auf ihre Umgebung - allein der thermische Zusammenstoß mit Molekülen kann ihre Funktion empfindlich stören. Bemerkenswert ist, dass alle von lebenden Zellen und Organismen erzeugten Kräfte durch die gleichzeitige und abgestimmte Bewegung von vielen derartigen Nano-Maschinen erzeugt werden. Zellen können auf diese Weise Kräfte im Nanonewton-Bereich ausüben, Tiere sogar im Bereich von Hunderten von Newton. Biologische Systeme können also Kräfte in der Größenordnung von einigen Piconewton (10-12 Newton) bis zu mehreren Hundert Newton erzeugen. Wollen wir Menschen diese erstaunliche Fähigkeit nachahmen, müssen wir Filamentbündel und Gruppen von Motoren in größere und komplexere Systeme integrieren. Das ist eine fundamentale Herausforderung für die Bionanowissenschaften.

Das jetzt etablierte Forschungsnetzwerk über "Aktive Biomimetische Systeme" wird von Prof. Reinhard Lipowsky, Direktor am Max-Planck-Institut für Kolloid- und Grenzflächenforschung, koordiniert. Ziel des Verbundes ist es, zu einem tieferen Verständnis jener molekularen Prozesse zu kommen, die für die Erzeugung der Schub- und Zugkräfte verantwortlich sind. Darüber hinaus soll das kooperative Verhalten von Filamenten und Motoren in Bündeln, zufälligen Maschenwerken und komplexeren räumlichen Anordnungen beleuchtet werden. Des Weiteren wollen die Forscher die Eigenschaften von biomimetischen Systemen auf systematische und verlässliche Weise kontrollieren und variieren können, um auf diese Weise ihre Architektur optimieren und ihr Design verbessern zu können.

Aktive biomimetische Systeme, wie sie in dem Forschungsnetzwerk untersucht werden, haben viele potentielle Anwendungsmöglichkeiten: Transportsysteme für Wirkstoffe, molekulare Sortiervorrichtungen, diagnostische Geräte für das Screening von Zellen oder Gerüste für künstliche Gewebe. Eine langfristige Vision ist die Konstruktion von Nano-Robotern, die gezielt bestimmte Arbeiten im Nanometerbereich ausführen können. Diese winzigen Roboter werden einmal einen großen Einfluss auf viele Aspekte des menschlichen Lebens haben, wie beispielsweise bei der medizinischen Diagnostik einzelner Zellen, beim zielgerichteten Wirkstofftransport zu spezifischen Zellen oder in der nichtinvasiven Chirurgie sehr kleiner Regionen im menschlichen Körper. Gleichermaßen repräsentieren diese Roboter wichtige Komponenten für die Entwicklung von Herstellungsverfahren im Nanometerbereich. Dies erscheint vielversprechend, um damit molekulare Komponenten zu integrierten Nano-Systemen zusammenzubauen.

Die Forschung innerhalb dieses europäischen Netzwerks ist hoch interdisziplinär und kombiniert (bio)chemische Präparation, (bio)physikalische Charakterisierung und theoretische Modellbildung. Erreichte Ergebnisse sind die gemeinschaftliche Leistung von Biophysikern, Biochemikern, Physikalischen Chemikern und Bioingenieuren. Die teilnehmenden Institutionen sind: Max-Planck-Institut für Kolloid- und Grenzflächenforschung Potsdam, AMOLF Institut Amsterdam, BASF Ludwigshafen, Curie Institut Paris, Europäische Laboratorium für Molekularbiologie (EMBL) Heidelberg, Institut für Molekulare Biotechnologie Jena, CNRS Labor über Enzymologie und strukturelle Biochemie Gif-sur-Yvette, Politécnico Mailand, Universität Leipzig.

Prof. Dr. Reinhard Lipowsky | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpikg.mpg.de
http://www.mpg.de

Weitere Berichte zu: Filament Nano-Maschinen Schrittmotore

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie