Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Forschungsprogramm über Biomolekulare Nano-Maschinen gestartet

03.06.2005


Max-Planck-Institut für Kolloid- und Grenzflächenforschung erhält zwei Mio. Euro für Europäisches Forschungsnetzwerk


Nanoautobahn in Aktion: Zwei Schnappschüsse von mikrometergroßen Teilchen (helle Punkte), die entlang der nahezu parallelen Mikrotubuli transportiert werden (dunkle Linien). Die Mikrotubuli liegen unbeweglich, mit den nach rechts gerichteten Plus-Enden auf dem Glasträger. Die Teilchen werden mit Hilfe von Schrittmotoren, die aufgrund der geringen Größe unsichtbar sind, gezogen. Die Aufnahme des oberen und unteren Schnappschusses liegt 12 Sekunden auseinander. Während dieser Zeit wurden die Teilchen ca. 10 Mikrometer nach rechts bewegt. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung



Ein Forschungsprogramm über "Aktive Biomimetische Systeme", an dem Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung sowie von acht weiteren Forschungseinrichtungen in Deutschland, Frankreich, den Niederlanden und Italien beteiligt sind, erhält eine Förderung der Europäischen Kommission von 2 Mio. Euro. Im Rahmen eines "Specific Targeted Research Project (STREP)" untersuchen die Forscher biomolekulare Nano-Maschinen, also gerichtet wachsende Filamente bzw molekulare Schrittmotoren. Diese Strukturen sind in der Lage, Schub- bzw Zugkräfte in der Nanowelt zu erzeugen. Die Wissenschaftler erforschen jene molekularen Mechanismen, die genau diesen Kräften zugrunde liegen. Darüber hinaus sollen Möglichkeiten gezeigt werden, wie man solche molekularen Maschinen in Nano- und Mikrosysteme integrieren kann. Der europäische Forschungsverbund wird von Prof. Reinhard Lipowsky koordiniert und ist am 1. Mai 2005 gestartet.



Biomimetische Systeme sind Modelle, die bestimmte Aspekte biologischer Organismen nachahmen. So ist es verblüffend, dass biologische Zellen zu dramatischen morphologischen Veränderungen fähig sind. Sie können problemlos ihre Form sehr dünnen Poren anpassen, um sich durch diese hindurch zu zwängen, oder lange "Füße" ausbilden, um über Oberflächen zu kriechen und sich selbst in zwei Tochterzellen teilen. All diese Transformationsprozesse basieren zwei Typen von biomolekularen Nano-Maschinen - längenveränderlichen Filamenten und leistungsfähigen Schrittmotoren.

Beide Maschinen-Typen werden zwar durch Proteine gebildet, benutzen aber ganz unterschiedliche Mechanismen, um Kräfte zu erzeugen. Die Filamente sind stäbchenförmige Strukturen, die nur ca. 10 Nanometer dick, aber viele Mikrometer lang sind. Bei Zugabe von nanometergroßen Bausteinen verlängert sich eines ihrer Enden und erzeugt auf diese Weise Schubkräfte. Schrittmotoren sind Proteine mit zwei identischen "Beinen", jedes mit einer Größe von ca. 10 Nanometern. Kommt ein solcher Motor mit einem Filament in Kontakt, verändert sich seine äußere Form derart, dass an dem Filament Zugkräfte erzeugt werden.

Eine einzelne Nano-Maschine generiert aufgrund ihrer winzigen Größe relativ geringe Kräfte von wenigen Piconewton (10-12 Newton). Doch reagieren solch winzige Maschinen sehr sensibel auf ihre Umgebung - allein der thermische Zusammenstoß mit Molekülen kann ihre Funktion empfindlich stören. Bemerkenswert ist, dass alle von lebenden Zellen und Organismen erzeugten Kräfte durch die gleichzeitige und abgestimmte Bewegung von vielen derartigen Nano-Maschinen erzeugt werden. Zellen können auf diese Weise Kräfte im Nanonewton-Bereich ausüben, Tiere sogar im Bereich von Hunderten von Newton. Biologische Systeme können also Kräfte in der Größenordnung von einigen Piconewton (10-12 Newton) bis zu mehreren Hundert Newton erzeugen. Wollen wir Menschen diese erstaunliche Fähigkeit nachahmen, müssen wir Filamentbündel und Gruppen von Motoren in größere und komplexere Systeme integrieren. Das ist eine fundamentale Herausforderung für die Bionanowissenschaften.

Das jetzt etablierte Forschungsnetzwerk über "Aktive Biomimetische Systeme" wird von Prof. Reinhard Lipowsky, Direktor am Max-Planck-Institut für Kolloid- und Grenzflächenforschung, koordiniert. Ziel des Verbundes ist es, zu einem tieferen Verständnis jener molekularen Prozesse zu kommen, die für die Erzeugung der Schub- und Zugkräfte verantwortlich sind. Darüber hinaus soll das kooperative Verhalten von Filamenten und Motoren in Bündeln, zufälligen Maschenwerken und komplexeren räumlichen Anordnungen beleuchtet werden. Des Weiteren wollen die Forscher die Eigenschaften von biomimetischen Systemen auf systematische und verlässliche Weise kontrollieren und variieren können, um auf diese Weise ihre Architektur optimieren und ihr Design verbessern zu können.

Aktive biomimetische Systeme, wie sie in dem Forschungsnetzwerk untersucht werden, haben viele potentielle Anwendungsmöglichkeiten: Transportsysteme für Wirkstoffe, molekulare Sortiervorrichtungen, diagnostische Geräte für das Screening von Zellen oder Gerüste für künstliche Gewebe. Eine langfristige Vision ist die Konstruktion von Nano-Robotern, die gezielt bestimmte Arbeiten im Nanometerbereich ausführen können. Diese winzigen Roboter werden einmal einen großen Einfluss auf viele Aspekte des menschlichen Lebens haben, wie beispielsweise bei der medizinischen Diagnostik einzelner Zellen, beim zielgerichteten Wirkstofftransport zu spezifischen Zellen oder in der nichtinvasiven Chirurgie sehr kleiner Regionen im menschlichen Körper. Gleichermaßen repräsentieren diese Roboter wichtige Komponenten für die Entwicklung von Herstellungsverfahren im Nanometerbereich. Dies erscheint vielversprechend, um damit molekulare Komponenten zu integrierten Nano-Systemen zusammenzubauen.

Die Forschung innerhalb dieses europäischen Netzwerks ist hoch interdisziplinär und kombiniert (bio)chemische Präparation, (bio)physikalische Charakterisierung und theoretische Modellbildung. Erreichte Ergebnisse sind die gemeinschaftliche Leistung von Biophysikern, Biochemikern, Physikalischen Chemikern und Bioingenieuren. Die teilnehmenden Institutionen sind: Max-Planck-Institut für Kolloid- und Grenzflächenforschung Potsdam, AMOLF Institut Amsterdam, BASF Ludwigshafen, Curie Institut Paris, Europäische Laboratorium für Molekularbiologie (EMBL) Heidelberg, Institut für Molekulare Biotechnologie Jena, CNRS Labor über Enzymologie und strukturelle Biochemie Gif-sur-Yvette, Politécnico Mailand, Universität Leipzig.

Prof. Dr. Reinhard Lipowsky | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpikg.mpg.de
http://www.mpg.de

Weitere Berichte zu: Filament Nano-Maschinen Schrittmotore

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten