Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie der Feuerkäfer auf Waldbrände fliegt

16.08.2001


Der australische Feuerkäfer hat an jeder Seite zwei halbmillimetergroße Wärmestrahlungs-Sensoren. Bilder zu dieser Pressemitteilung können Sie hier herunterladen


Der australische "Feuerkäfer" Merimna atrata kann sich im wahrsten Sinne des Wortes für Waldbrände erwärmen: Biologen der Universität Bonn entdeckten bei ihm einen speziellen Sensor, der besonders auf Wärme-Strahlung (Infrarot- oder IR-Strahlung), die von brennendem Holz ausgeht, anspricht.


An vier Stellen weist der Panzer aus Kutikula am Hinterleib des Käfers spezialisierte Bereiche auf, die die IR-Strahlung absorbieren und sich dadurch erwärmen; die Temperaturänderung wird von Nervenenden aufgenommen und in elektrische Impulse umgesetzt. Den Sinn für’s Brenzlige braucht das Insekt für seine Fortpflanzung, denn die Merimna-Larven entwickeln sich nur in frisch verbranntem Holz.

Die Feuerkäfer profitieren dabei von einer grundlegenden Eigenschaft ihres Kutikula-Panzers: Insekten-Kutikula absorbiert nämlich Wärmestrahlung, wie sie von Waldbränden ausgeht, besonders gut und erwärmt sich dabei - "ganz ähnlich wie dies ein schwarzer Motorradsattel tut, wenn dieser sichtbares Sonnenlicht absorbiert", erklärt Dr. Helmut Schmitz vom Bonner Institut für Zoologie. An der Stelle eines IR-Sensors ist der Panzer leicht eingedellt; darunter liegt ein ganzes Bündel von Nervenenden, die durch einen Luftsack vom Rest des Insekts isoliert sind. Schmitz und seine Mitarbeiter erwärmten im Experiment den Temperaturfühler mit einem Laser. Als Reaktion veränderten sich die Frequenz der Nervenimpulse. Konnten die Wissenschaftler bei Raumtemperatur knapp 10 Impulse pro Sekunde messen, traten bei einer Erwärmung um 20 Grad weit über 100 Impulse pro Sekunde auf. Selbst ein Temperaturanstieg um 0,7 Grad führte zu einem veränderten Erregungsmuster. "Wir sind aber überzeugt, dass der Sensor beim unbeeinträchtigten Insekt noch weitaus empfindlicher ist", betont Schmitz. "Wahrscheinlich kann der Feuerkäfer noch Temperaturunterschiede von wenigen hundertstel Grad wahrnehmen."


"Die Waldbrand-Sensoren sind im Reich der wirbellosen Tiere eine ganz große Rarität", sagt Schmitz. "So wurden bisher nur bei zwei Käfergattungen IR-Rezeptoren entdeckt." Südamerikanische Riesenschlangen haben übrigens im Mundbereich ganz ähnliche Fühler für Wärmestrahlung. An einigen Stellen sind dort sind die Lippenschuppen deutlich dünner und auch anders gefärbt; darunter liegen - wie bei Merimna - Nervenenden, die eine Temperaturänderung in elektrische Signale umwandeln. Die sogenannten Lippenorgane sprechen hier hauptsächlich auf IR-Strahlung an, wie sie von knapp 40 Grad warmen Gegenständen ausgeht - so warm sind in der Regel die warmblütigen Beutetiere der Riesenboas.

Weitere Informationen: Dr. Helmut Schmitz, Institut für Zoologie der Universität Bonn, Tel.: 0228/73-2071, Fax: 0228/73-5458, E-Mail: h.schmitz@uni-bonn.de


Frank Luerweg | idw
Weitere Informationen:
http://www.verwaltung.uni-bonn.de/presse/Bildgalerie/kaefer/kaefer.htm

Weitere Berichte zu: Feuerkäfer IR-Strahlung Insekt Waldbrand

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics