Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Steuerung der synaptischen Plastizität

02.06.2005


Max-Planck-Forscher enthüllen weitere molekulare Details, die die Stärke der Informationsübertragung zwischen Nervenzellen im Gehirn regeln


Ein weiterer Schritt bei der Aufklärung jener Mechanismen, die die Informationsübertragung zwischen Nervenzellen regulieren, ist jetzt Forschern um Ralf Schneggenburger am Max-Planck-Institut für biophysikalische Chemie in Göttingen gelungen. Mit elektrophysiologischen Messungen und der optischen Stimulation einzelner Nervenzellen konnten die Wissenschaftler zeigen, dass spezielle Botenstoffe die Wahrscheinlichkeit beeinflussen, mit der Vesikel - winzige mit Neurotransmittern gefüllte Bläschen - mit der Zellmembran verschmelzen und in nachgeschalteten Nervenzellen ein chemisches Signal auslösen. Diese Erkenntnisse sollten es ermöglichen, jene Proteine zu identifizieren, die zur Plastizität der Signalübertragung und damit zur Lernfähigkeit neuronaler Netzwerke beitragen (Nature, 26. Mai 2005).

Unser Gehirn besteht aus etwa 100 Milliarden Nervenzellen, die in komplexen Netzwerken miteinander verknüpft sind. Die Kommunikation zwischen diesen Zellen ist essentiell für die Funktionsweise unseres Gehirns. Nervenzellen kommunizieren untereinander über spezielle Kontaktstellen, die "Synapsen", wo Transmitter-gefüllte Vesikel auf einen elektrischen Impuls der präsynaptischen Nervenzelle hin mit der Zellmembran fusionieren und daraufhin einen Botenstoff freisetzen, der die postsynaptische Nervenzelle in ihrer elektrischen Aktivität beeinflusst. Dieser Prozess der synaptischen Übertragung ist in ihrer Stärke hochgradig modulierbar, und die Plastizität der synaptischen Übertragung wird als Grundlage für Lernen und Gedächtnisbildung angesehen.


Damit Nervenzellen auch bei wiederholten Reizen Neurotransmitter freisetzen können, halten diese an jeder synaptischen Kontaktstelle einen Pool von drei bis acht bereits angedockte und sekretionsbereite Vesikel bereit. Diese nur etwa 40 Nanometer große Bläschen (das entspricht einem Fünfundzwanzigtausendstel eines Millimeters) kann man im Elektronenmikroskop eng angedockt an die Plasmamembran der präsynaptischen Nervenzelle beobachten (s. Abb.). Doch was genau bei der Fusion synaptischer Vesikel mit der Zellmembran geschieht, lässt sich weder mit Elektronen- noch mit Lichtmikroskopen direkt beobachten. Daher müssen die Vorgänge während der synaptischen Übertragung aus verschiedenen experimentellen Beobachtungen rekonstruiert werden.

Die Arbeitsgruppe von Ralf Schneggenburger arbeitet mit einer ungewöhnlich großen, der so genannten "Held’schen Calyx-Synapse". Die Nervenendigungen sind in dieser Zelle so groß, dass elektrische Messungen mit dem patch clamp-Verfahren direkt an der präsynaptischen Nervenendigung durchgeführt werden können. Dadurch ist es möglich, nicht nur die Ströme von Kalzium-Ionen (Ca2+) im Nerventerminal zu messen, sondern Ca2+-Indikatorfarbstoffe und photolysierbare Ca2+-Chelatoren über die patch-Pipette unmittelbar in das Zytoplasma der Nervenendigung einzuschleusen. Auf diese Weise kann die Ca2+-aktivierte Vesikelfusion in der Nervenendigung gezielt ausgelöst werden. Dies ermöglichte es, die Modulation der Synapsenstärke im Detail zu untersuchen.

Auf diese Weise konnten die Max-Planck-Forscher nun erstmals direkt nachweisen, dass Phorbolester, welche den Proteinkinase-C / Munc-13-Signalweg aktivieren, zu einer Erhöhung der Kalzium-Sensitivität der Vesikelfusion führen, ohne dass sich der Pool schnell freisetzbarer Vesikel nennenswert erhöht. Dieser Modulationsweg ist energetisch günstig für die Nervenendigung, da die Bereitstellung einer höheren Zahl sekretionsbereiter Vesikel ansonsten mit einem Verbrauch von ATP einherginge. Dieser Befund zeigt, dass Nervenzellen über einen Mechanismus verfügen, um die Kalzium-Empfindlichkeit der sekretionsbereiten Vesikel zu beeinflussen.

Die Ergebnisse werfen auch ein neues Licht auf den Zusammenhang zwischen der Kalzium-vermittelten und der Kalzium-unabhängigen Fusion von Vesikeln mit der Zellmembran. Bisher hatte man angenommen, dass die "spontane" Fusion von Vesikeln in unstimulierten Nervenzellen unabhängig von Kalzium erfolgt, und möglicherweise von einer speziellen Gruppe angedockter Vesikel übernommen wird. Doch wie die Forscher nun zeigen konnten, treten spontane Vesikelfusionen am unteren Ende derselben Dosis-Wirkungskurve auf, die den Zusammenhang zwischen der Kalzium-vermittelten Vesikelfusionsrate und der intrazellulären Kalzium-Konzentration beschreibt. Daher vermuten die Forscher, dass derselbe Kalzium-Sensorkomplex sowohl die spontane als auch die Kalzium-getriebene Vesikelfusion vermittelt.

Überraschend stellten die Forscher jedoch fest, dass bei niedrigen Kalzium-Konzentrationen bereits ein bis zwei Ca2+-Ionen ausreichen, um ein Vesikel zur Fusion zu bringen. Bei höheren Ca2+-Konzentrationen sind dann zunehmend mehr, bis zu vier oder fünf Ca2+-Ionen notwendig, um die Fusion eines einzelnen Vesikels auszulösen. Allerdings findet die Vesikelfusion nach der Bindung von vier bis fünf Ca2+-Ionen an den Kalzium-Sensorkomplex auch wesentlich schneller statt.

Diese Befunde zeigen, dass die Kalzium-Regulation der Vesikelfusion weitaus komplexer ist als bisher angenommen. Die Empfindlichkeit für Kalzium wird offenbar direkt durch intrazelluläre Signalwege gesteuert, wie die Aktivierung des Proteinkinase-C / Munc-13 Signalweges, wobei derselbe Kalzium-Sensor sowohl die Ca2+-getriebene als auch die spontane Vesikelfusion steuert. Dieser Sensor besteht vermutlich aus einem Komplex präsynaptischer Proteine, der durch so genannte SNARE-Proteine (engl.: soluble NSF-attachment protein receptor) sowie weitere angelagerte Proteine, wie die Synaptotagmine, gebildet wird. Zudem deuten die Untersuchungsergebnisse darauf hin, dass noch weitere präsynaptische Proteine, wie Munc-13, die durch Diazylglycerin aktiviert werden, die Kalzium-Sensitivität der Vesikelfusion beeinflussen. Die Forscher wollen nun die genaue Funktion der synaptischen Proteine ergründen, die an der Regulation der Kalzium-vermittelten Vesikelfusion beteiligt sind.

Dieses Projekt wurde durch die Deutsche Forschungsgemeinschaft und die Max-Planck-Gesellschaft unterstützt.

Dr. Ralf Schneggenburger | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Nervenendigung Nervenzelle Plastizität Protein Vesikel Vesikelfusion Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

nachricht Wehrhaft gegen aggressiven Sauerstoff - Metalloxid-Nickelschaum-Elektroden in der Wasseraufspaltung
25.04.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen