Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Steuerung der synaptischen Plastizität

02.06.2005


Max-Planck-Forscher enthüllen weitere molekulare Details, die die Stärke der Informationsübertragung zwischen Nervenzellen im Gehirn regeln


Ein weiterer Schritt bei der Aufklärung jener Mechanismen, die die Informationsübertragung zwischen Nervenzellen regulieren, ist jetzt Forschern um Ralf Schneggenburger am Max-Planck-Institut für biophysikalische Chemie in Göttingen gelungen. Mit elektrophysiologischen Messungen und der optischen Stimulation einzelner Nervenzellen konnten die Wissenschaftler zeigen, dass spezielle Botenstoffe die Wahrscheinlichkeit beeinflussen, mit der Vesikel - winzige mit Neurotransmittern gefüllte Bläschen - mit der Zellmembran verschmelzen und in nachgeschalteten Nervenzellen ein chemisches Signal auslösen. Diese Erkenntnisse sollten es ermöglichen, jene Proteine zu identifizieren, die zur Plastizität der Signalübertragung und damit zur Lernfähigkeit neuronaler Netzwerke beitragen (Nature, 26. Mai 2005).

Unser Gehirn besteht aus etwa 100 Milliarden Nervenzellen, die in komplexen Netzwerken miteinander verknüpft sind. Die Kommunikation zwischen diesen Zellen ist essentiell für die Funktionsweise unseres Gehirns. Nervenzellen kommunizieren untereinander über spezielle Kontaktstellen, die "Synapsen", wo Transmitter-gefüllte Vesikel auf einen elektrischen Impuls der präsynaptischen Nervenzelle hin mit der Zellmembran fusionieren und daraufhin einen Botenstoff freisetzen, der die postsynaptische Nervenzelle in ihrer elektrischen Aktivität beeinflusst. Dieser Prozess der synaptischen Übertragung ist in ihrer Stärke hochgradig modulierbar, und die Plastizität der synaptischen Übertragung wird als Grundlage für Lernen und Gedächtnisbildung angesehen.


Damit Nervenzellen auch bei wiederholten Reizen Neurotransmitter freisetzen können, halten diese an jeder synaptischen Kontaktstelle einen Pool von drei bis acht bereits angedockte und sekretionsbereite Vesikel bereit. Diese nur etwa 40 Nanometer große Bläschen (das entspricht einem Fünfundzwanzigtausendstel eines Millimeters) kann man im Elektronenmikroskop eng angedockt an die Plasmamembran der präsynaptischen Nervenzelle beobachten (s. Abb.). Doch was genau bei der Fusion synaptischer Vesikel mit der Zellmembran geschieht, lässt sich weder mit Elektronen- noch mit Lichtmikroskopen direkt beobachten. Daher müssen die Vorgänge während der synaptischen Übertragung aus verschiedenen experimentellen Beobachtungen rekonstruiert werden.

Die Arbeitsgruppe von Ralf Schneggenburger arbeitet mit einer ungewöhnlich großen, der so genannten "Held’schen Calyx-Synapse". Die Nervenendigungen sind in dieser Zelle so groß, dass elektrische Messungen mit dem patch clamp-Verfahren direkt an der präsynaptischen Nervenendigung durchgeführt werden können. Dadurch ist es möglich, nicht nur die Ströme von Kalzium-Ionen (Ca2+) im Nerventerminal zu messen, sondern Ca2+-Indikatorfarbstoffe und photolysierbare Ca2+-Chelatoren über die patch-Pipette unmittelbar in das Zytoplasma der Nervenendigung einzuschleusen. Auf diese Weise kann die Ca2+-aktivierte Vesikelfusion in der Nervenendigung gezielt ausgelöst werden. Dies ermöglichte es, die Modulation der Synapsenstärke im Detail zu untersuchen.

Auf diese Weise konnten die Max-Planck-Forscher nun erstmals direkt nachweisen, dass Phorbolester, welche den Proteinkinase-C / Munc-13-Signalweg aktivieren, zu einer Erhöhung der Kalzium-Sensitivität der Vesikelfusion führen, ohne dass sich der Pool schnell freisetzbarer Vesikel nennenswert erhöht. Dieser Modulationsweg ist energetisch günstig für die Nervenendigung, da die Bereitstellung einer höheren Zahl sekretionsbereiter Vesikel ansonsten mit einem Verbrauch von ATP einherginge. Dieser Befund zeigt, dass Nervenzellen über einen Mechanismus verfügen, um die Kalzium-Empfindlichkeit der sekretionsbereiten Vesikel zu beeinflussen.

Die Ergebnisse werfen auch ein neues Licht auf den Zusammenhang zwischen der Kalzium-vermittelten und der Kalzium-unabhängigen Fusion von Vesikeln mit der Zellmembran. Bisher hatte man angenommen, dass die "spontane" Fusion von Vesikeln in unstimulierten Nervenzellen unabhängig von Kalzium erfolgt, und möglicherweise von einer speziellen Gruppe angedockter Vesikel übernommen wird. Doch wie die Forscher nun zeigen konnten, treten spontane Vesikelfusionen am unteren Ende derselben Dosis-Wirkungskurve auf, die den Zusammenhang zwischen der Kalzium-vermittelten Vesikelfusionsrate und der intrazellulären Kalzium-Konzentration beschreibt. Daher vermuten die Forscher, dass derselbe Kalzium-Sensorkomplex sowohl die spontane als auch die Kalzium-getriebene Vesikelfusion vermittelt.

Überraschend stellten die Forscher jedoch fest, dass bei niedrigen Kalzium-Konzentrationen bereits ein bis zwei Ca2+-Ionen ausreichen, um ein Vesikel zur Fusion zu bringen. Bei höheren Ca2+-Konzentrationen sind dann zunehmend mehr, bis zu vier oder fünf Ca2+-Ionen notwendig, um die Fusion eines einzelnen Vesikels auszulösen. Allerdings findet die Vesikelfusion nach der Bindung von vier bis fünf Ca2+-Ionen an den Kalzium-Sensorkomplex auch wesentlich schneller statt.

Diese Befunde zeigen, dass die Kalzium-Regulation der Vesikelfusion weitaus komplexer ist als bisher angenommen. Die Empfindlichkeit für Kalzium wird offenbar direkt durch intrazelluläre Signalwege gesteuert, wie die Aktivierung des Proteinkinase-C / Munc-13 Signalweges, wobei derselbe Kalzium-Sensor sowohl die Ca2+-getriebene als auch die spontane Vesikelfusion steuert. Dieser Sensor besteht vermutlich aus einem Komplex präsynaptischer Proteine, der durch so genannte SNARE-Proteine (engl.: soluble NSF-attachment protein receptor) sowie weitere angelagerte Proteine, wie die Synaptotagmine, gebildet wird. Zudem deuten die Untersuchungsergebnisse darauf hin, dass noch weitere präsynaptische Proteine, wie Munc-13, die durch Diazylglycerin aktiviert werden, die Kalzium-Sensitivität der Vesikelfusion beeinflussen. Die Forscher wollen nun die genaue Funktion der synaptischen Proteine ergründen, die an der Regulation der Kalzium-vermittelten Vesikelfusion beteiligt sind.

Dieses Projekt wurde durch die Deutsche Forschungsgemeinschaft und die Max-Planck-Gesellschaft unterstützt.

Dr. Ralf Schneggenburger | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Nervenendigung Nervenzelle Plastizität Protein Vesikel Vesikelfusion Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen