Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Steuerung der synaptischen Plastizität

02.06.2005


Max-Planck-Forscher enthüllen weitere molekulare Details, die die Stärke der Informationsübertragung zwischen Nervenzellen im Gehirn regeln


Ein weiterer Schritt bei der Aufklärung jener Mechanismen, die die Informationsübertragung zwischen Nervenzellen regulieren, ist jetzt Forschern um Ralf Schneggenburger am Max-Planck-Institut für biophysikalische Chemie in Göttingen gelungen. Mit elektrophysiologischen Messungen und der optischen Stimulation einzelner Nervenzellen konnten die Wissenschaftler zeigen, dass spezielle Botenstoffe die Wahrscheinlichkeit beeinflussen, mit der Vesikel - winzige mit Neurotransmittern gefüllte Bläschen - mit der Zellmembran verschmelzen und in nachgeschalteten Nervenzellen ein chemisches Signal auslösen. Diese Erkenntnisse sollten es ermöglichen, jene Proteine zu identifizieren, die zur Plastizität der Signalübertragung und damit zur Lernfähigkeit neuronaler Netzwerke beitragen (Nature, 26. Mai 2005).

Unser Gehirn besteht aus etwa 100 Milliarden Nervenzellen, die in komplexen Netzwerken miteinander verknüpft sind. Die Kommunikation zwischen diesen Zellen ist essentiell für die Funktionsweise unseres Gehirns. Nervenzellen kommunizieren untereinander über spezielle Kontaktstellen, die "Synapsen", wo Transmitter-gefüllte Vesikel auf einen elektrischen Impuls der präsynaptischen Nervenzelle hin mit der Zellmembran fusionieren und daraufhin einen Botenstoff freisetzen, der die postsynaptische Nervenzelle in ihrer elektrischen Aktivität beeinflusst. Dieser Prozess der synaptischen Übertragung ist in ihrer Stärke hochgradig modulierbar, und die Plastizität der synaptischen Übertragung wird als Grundlage für Lernen und Gedächtnisbildung angesehen.


Damit Nervenzellen auch bei wiederholten Reizen Neurotransmitter freisetzen können, halten diese an jeder synaptischen Kontaktstelle einen Pool von drei bis acht bereits angedockte und sekretionsbereite Vesikel bereit. Diese nur etwa 40 Nanometer große Bläschen (das entspricht einem Fünfundzwanzigtausendstel eines Millimeters) kann man im Elektronenmikroskop eng angedockt an die Plasmamembran der präsynaptischen Nervenzelle beobachten (s. Abb.). Doch was genau bei der Fusion synaptischer Vesikel mit der Zellmembran geschieht, lässt sich weder mit Elektronen- noch mit Lichtmikroskopen direkt beobachten. Daher müssen die Vorgänge während der synaptischen Übertragung aus verschiedenen experimentellen Beobachtungen rekonstruiert werden.

Die Arbeitsgruppe von Ralf Schneggenburger arbeitet mit einer ungewöhnlich großen, der so genannten "Held’schen Calyx-Synapse". Die Nervenendigungen sind in dieser Zelle so groß, dass elektrische Messungen mit dem patch clamp-Verfahren direkt an der präsynaptischen Nervenendigung durchgeführt werden können. Dadurch ist es möglich, nicht nur die Ströme von Kalzium-Ionen (Ca2+) im Nerventerminal zu messen, sondern Ca2+-Indikatorfarbstoffe und photolysierbare Ca2+-Chelatoren über die patch-Pipette unmittelbar in das Zytoplasma der Nervenendigung einzuschleusen. Auf diese Weise kann die Ca2+-aktivierte Vesikelfusion in der Nervenendigung gezielt ausgelöst werden. Dies ermöglichte es, die Modulation der Synapsenstärke im Detail zu untersuchen.

Auf diese Weise konnten die Max-Planck-Forscher nun erstmals direkt nachweisen, dass Phorbolester, welche den Proteinkinase-C / Munc-13-Signalweg aktivieren, zu einer Erhöhung der Kalzium-Sensitivität der Vesikelfusion führen, ohne dass sich der Pool schnell freisetzbarer Vesikel nennenswert erhöht. Dieser Modulationsweg ist energetisch günstig für die Nervenendigung, da die Bereitstellung einer höheren Zahl sekretionsbereiter Vesikel ansonsten mit einem Verbrauch von ATP einherginge. Dieser Befund zeigt, dass Nervenzellen über einen Mechanismus verfügen, um die Kalzium-Empfindlichkeit der sekretionsbereiten Vesikel zu beeinflussen.

Die Ergebnisse werfen auch ein neues Licht auf den Zusammenhang zwischen der Kalzium-vermittelten und der Kalzium-unabhängigen Fusion von Vesikeln mit der Zellmembran. Bisher hatte man angenommen, dass die "spontane" Fusion von Vesikeln in unstimulierten Nervenzellen unabhängig von Kalzium erfolgt, und möglicherweise von einer speziellen Gruppe angedockter Vesikel übernommen wird. Doch wie die Forscher nun zeigen konnten, treten spontane Vesikelfusionen am unteren Ende derselben Dosis-Wirkungskurve auf, die den Zusammenhang zwischen der Kalzium-vermittelten Vesikelfusionsrate und der intrazellulären Kalzium-Konzentration beschreibt. Daher vermuten die Forscher, dass derselbe Kalzium-Sensorkomplex sowohl die spontane als auch die Kalzium-getriebene Vesikelfusion vermittelt.

Überraschend stellten die Forscher jedoch fest, dass bei niedrigen Kalzium-Konzentrationen bereits ein bis zwei Ca2+-Ionen ausreichen, um ein Vesikel zur Fusion zu bringen. Bei höheren Ca2+-Konzentrationen sind dann zunehmend mehr, bis zu vier oder fünf Ca2+-Ionen notwendig, um die Fusion eines einzelnen Vesikels auszulösen. Allerdings findet die Vesikelfusion nach der Bindung von vier bis fünf Ca2+-Ionen an den Kalzium-Sensorkomplex auch wesentlich schneller statt.

Diese Befunde zeigen, dass die Kalzium-Regulation der Vesikelfusion weitaus komplexer ist als bisher angenommen. Die Empfindlichkeit für Kalzium wird offenbar direkt durch intrazelluläre Signalwege gesteuert, wie die Aktivierung des Proteinkinase-C / Munc-13 Signalweges, wobei derselbe Kalzium-Sensor sowohl die Ca2+-getriebene als auch die spontane Vesikelfusion steuert. Dieser Sensor besteht vermutlich aus einem Komplex präsynaptischer Proteine, der durch so genannte SNARE-Proteine (engl.: soluble NSF-attachment protein receptor) sowie weitere angelagerte Proteine, wie die Synaptotagmine, gebildet wird. Zudem deuten die Untersuchungsergebnisse darauf hin, dass noch weitere präsynaptische Proteine, wie Munc-13, die durch Diazylglycerin aktiviert werden, die Kalzium-Sensitivität der Vesikelfusion beeinflussen. Die Forscher wollen nun die genaue Funktion der synaptischen Proteine ergründen, die an der Regulation der Kalzium-vermittelten Vesikelfusion beteiligt sind.

Dieses Projekt wurde durch die Deutsche Forschungsgemeinschaft und die Max-Planck-Gesellschaft unterstützt.

Dr. Ralf Schneggenburger | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Nervenendigung Nervenzelle Plastizität Protein Vesikel Vesikelfusion Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten