Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtmikroskopie in ungekannter Schärfe

02.06.2005


Bilder jenseits der Beugungsgrenze. Obere Reihe: (a) Fluoreszenzgefärbte Poren einer porösen Membran sind mit herkömmlicher Auflösung als solche nicht zu erkennen. (b) Parallel dazu ausgeführte Abbildung mit Hilfe eines STED-Mikroskops (Stimulated Emission Depletion Mikroscopy) fördert ihre Struktur zutage. Confocal bedeutet, dass die herkömmlich aufgelösten Bilder in der linken Spalte mit einem state of the art Confocal-Lichtmikroskopieverfahren aufgenommen wurde, was zur Zeit das beste beugungsbegrenzte Standardverfahren der Lichtmikroskopie ist. Untere Reihe: Mit einem Elektronenstrahl gefertigte Nanostrukturen in fluoreszenzgefärbtem PMMA, aufgenommen zunächst mit herkömmlicher (confocal) Auflösung (c) sowie mit STED (d). Die Rohdaten von (c) und (d) wurden nach der Bildaufnahme durch eine lineare mathematische Entfaltung auf gleiche Weise geringfügig verbessert. Trotzdem kann das herkömmlich aufgenommene Bild in (c) nicht die Linienstruktur der Probe zutage fördern, während das STED-Mikroskop Linien mit bis zu 80 Nanometer Breite und 40 Nanometer Zwischenraum auflöst (d). Damit rückt die optische Abbildung in Bereiche vor, die bislang nur dem Elektronenmikroskop vorbehalten waren. Bild: MPI für biophysikalische Chemie


Das neue Gesetz, benannt als RESOLFT (reversible saturable optical fluorescent transition), nach dem in der Fluoreszenzmikroskopie eine unbegrenzte Auflösung möglich ist. Bild: MPI für biophysikalische Chemie / Stefan Hell


Wissenschaftler des Max-Planck-Instituts für biophysikalische Chemie steigern die Auflösung der Fluoreszenzmikroskopie jenseits konventioneller Grenzen


Das von Ernst Abbe 1873 formulierte Gesetz zur beugungsbegrenzten Auflösung im Lichtmikroskop haben jetzt Wissenschaftler des Max-Planck-Instituts für biophysikalische Chemie in Göttingen überwunden und ein neues Gesetz, das in der Fluoreszenzmikroskopie eine unbegrenzte optische Auflösung ermöglicht, etabliert. Zukünftige Anwendungen reichen von der Abbildung des Zellinnern über die Vermessung von Nanostrukturen zur Herstellung von Computerchips bis hin zur besseren Vermessung des Reaktionsverhaltens von Proteinen. Die Forscher haben ihre Erkenntnisse in mehren Artikeln in der Fachzeitschrift "Physical Review Letters" vorgestellt (Phys. Rev. Lett., 15. April 2005; Phys. Rev. Lett. 6. Mai 2005).

Seit seiner Erfindung im 17. Jahrhundert war das Lichtmikroskop wie kaum ein anderes Instrument Schlüssel für neue wissenschaftliche Erkenntnisse. Das gilt auch heute noch speziell für die Biologie, denn fokussiertes Licht ist das einzige Mittel, mit dem man das Innere lebender Zellen auf schonende Weise erkunden kann. Doch als Welle unterliegt fokussiertes Licht der Beugung, deren auflösungsbegrenzende Wirkung von Ernst Abbe bereits 1873 erkannt wurde. Abbe, dessen Todestag sich im Februar 2005 zum 100. Mal gejährt hat, hielt diese Grenze in einer Formel fest, die besagt, dass Strukturen feiner als 200 Nanometer (etwa vier Tausendstel einer Haaresbreite) im Lichtmikroskop nicht mehr getrennt wahrgenommen werden können.


Abbes Gesetz galt lange Zeit als praktisch unüberwindbar. Für eine höhere Auflösung müsste man - so die bisherige Lehrmeinung - ein aufwändiges Elektronen- oder Rastersondenmikroskop heranziehen. In den vergangenen Jahren ist es aber Forschern am Göttinger Max-Planck-Institut für Biophysikalische Chemie gelungen, mit der Stimulated Emission Depletion-Mikroskopie (STED) einen physikalisch schlüssigen Ansatz zu entwickeln und experimentell zu verifizieren, mit dem die Auflösungsgrenze in der Fluoreszenzmikroskopie überwunden werden kann.

Im STED-Mikroskop kann die für die Auflösung relevante Scheibe der Fluoreszenz deutlich kleiner als 200 Nanometer (ein Nanometer ist ein Milliardstel Meter), prinzipiell sogar bis auf die Größe eines Moleküls (2-5 Nanometer) verkleinert werden. Denn dieser Fokus unterliegt nicht mehr der Abbe’schen Formel, sondern einem neuen Gesetz, das sich von Abbes Formel um einen entscheidenden Faktor - einen Wurzelterm - unterscheidet.

Die Göttinger Forscher haben das neue Gesetz bereits experimentell nachgewiesen und darüber hinaus gezeigt, dass sich selbst mit herkömmlichen Objektiven und fokussiertem Licht Auflösungen von bis zu 16 Nanometer erreichen lassen. Damit haben die Forscher zum ersten Mal prinzipiell belegt, dass man fluoreszierende Proben auch mit fokussierender Optik auf der Nanoskala abbilden kann. In einer weiteren Studie zeigten die Wissenschaftler, dass man mit der STED-Mikroskopie feinste lithographische Strukturen von nur 40 bis 80 Nanometer Breite abbilden kann, falls man sie mit Fluoreszenzmolekülen markiert. Dies könnte für die Herstellung von Computerchips wichtig werden, da die Abbildung solcher Feinheiten bisher der Elektronenmikroskopie vorbehalten war.

Die Verkleinerung des effektiven Fluoreszenzfokus hat auch Auswirkungen auf Verfahren, mit denen man die Reaktionsbewegungen von Molekülen in Lösungen erforscht. Je kleiner die Fokalvolumina, desto effektiver und sensitiver sind diese Verfahren und desto genauer wird die Darstellung. Daher waren auch diese Verfahren durch Beugung bisher begrenzt. In einer dritten Arbeit wiesen die Göttinger Forscher jetzt nach, dass mit ihrem neuen Mikroskopie-Verfahren zum ersten Mal Messvolumina erreicht werden, die deutlich unterhalb der Auflösungsgrenze liegen. STED könnte daher in Zukunft auch die Analyse von pharmazeutischen Wirkstoffen und Protein-Interaktionen in Zellen deutlich verbessern.

Prof. Dr. Stefan W. Hell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.nanoscopy.de
http://www.mpg.de

Weitere Berichte zu: Fluoreszenzmikroskopie Formel Lichtmikroskop Nanometer

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften