Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtmikroskopie in ungekannter Schärfe

02.06.2005


Bilder jenseits der Beugungsgrenze. Obere Reihe: (a) Fluoreszenzgefärbte Poren einer porösen Membran sind mit herkömmlicher Auflösung als solche nicht zu erkennen. (b) Parallel dazu ausgeführte Abbildung mit Hilfe eines STED-Mikroskops (Stimulated Emission Depletion Mikroscopy) fördert ihre Struktur zutage. Confocal bedeutet, dass die herkömmlich aufgelösten Bilder in der linken Spalte mit einem state of the art Confocal-Lichtmikroskopieverfahren aufgenommen wurde, was zur Zeit das beste beugungsbegrenzte Standardverfahren der Lichtmikroskopie ist. Untere Reihe: Mit einem Elektronenstrahl gefertigte Nanostrukturen in fluoreszenzgefärbtem PMMA, aufgenommen zunächst mit herkömmlicher (confocal) Auflösung (c) sowie mit STED (d). Die Rohdaten von (c) und (d) wurden nach der Bildaufnahme durch eine lineare mathematische Entfaltung auf gleiche Weise geringfügig verbessert. Trotzdem kann das herkömmlich aufgenommene Bild in (c) nicht die Linienstruktur der Probe zutage fördern, während das STED-Mikroskop Linien mit bis zu 80 Nanometer Breite und 40 Nanometer Zwischenraum auflöst (d). Damit rückt die optische Abbildung in Bereiche vor, die bislang nur dem Elektronenmikroskop vorbehalten waren. Bild: MPI für biophysikalische Chemie


Das neue Gesetz, benannt als RESOLFT (reversible saturable optical fluorescent transition), nach dem in der Fluoreszenzmikroskopie eine unbegrenzte Auflösung möglich ist. Bild: MPI für biophysikalische Chemie / Stefan Hell


Wissenschaftler des Max-Planck-Instituts für biophysikalische Chemie steigern die Auflösung der Fluoreszenzmikroskopie jenseits konventioneller Grenzen


Das von Ernst Abbe 1873 formulierte Gesetz zur beugungsbegrenzten Auflösung im Lichtmikroskop haben jetzt Wissenschaftler des Max-Planck-Instituts für biophysikalische Chemie in Göttingen überwunden und ein neues Gesetz, das in der Fluoreszenzmikroskopie eine unbegrenzte optische Auflösung ermöglicht, etabliert. Zukünftige Anwendungen reichen von der Abbildung des Zellinnern über die Vermessung von Nanostrukturen zur Herstellung von Computerchips bis hin zur besseren Vermessung des Reaktionsverhaltens von Proteinen. Die Forscher haben ihre Erkenntnisse in mehren Artikeln in der Fachzeitschrift "Physical Review Letters" vorgestellt (Phys. Rev. Lett., 15. April 2005; Phys. Rev. Lett. 6. Mai 2005).

Seit seiner Erfindung im 17. Jahrhundert war das Lichtmikroskop wie kaum ein anderes Instrument Schlüssel für neue wissenschaftliche Erkenntnisse. Das gilt auch heute noch speziell für die Biologie, denn fokussiertes Licht ist das einzige Mittel, mit dem man das Innere lebender Zellen auf schonende Weise erkunden kann. Doch als Welle unterliegt fokussiertes Licht der Beugung, deren auflösungsbegrenzende Wirkung von Ernst Abbe bereits 1873 erkannt wurde. Abbe, dessen Todestag sich im Februar 2005 zum 100. Mal gejährt hat, hielt diese Grenze in einer Formel fest, die besagt, dass Strukturen feiner als 200 Nanometer (etwa vier Tausendstel einer Haaresbreite) im Lichtmikroskop nicht mehr getrennt wahrgenommen werden können.


Abbes Gesetz galt lange Zeit als praktisch unüberwindbar. Für eine höhere Auflösung müsste man - so die bisherige Lehrmeinung - ein aufwändiges Elektronen- oder Rastersondenmikroskop heranziehen. In den vergangenen Jahren ist es aber Forschern am Göttinger Max-Planck-Institut für Biophysikalische Chemie gelungen, mit der Stimulated Emission Depletion-Mikroskopie (STED) einen physikalisch schlüssigen Ansatz zu entwickeln und experimentell zu verifizieren, mit dem die Auflösungsgrenze in der Fluoreszenzmikroskopie überwunden werden kann.

Im STED-Mikroskop kann die für die Auflösung relevante Scheibe der Fluoreszenz deutlich kleiner als 200 Nanometer (ein Nanometer ist ein Milliardstel Meter), prinzipiell sogar bis auf die Größe eines Moleküls (2-5 Nanometer) verkleinert werden. Denn dieser Fokus unterliegt nicht mehr der Abbe’schen Formel, sondern einem neuen Gesetz, das sich von Abbes Formel um einen entscheidenden Faktor - einen Wurzelterm - unterscheidet.

Die Göttinger Forscher haben das neue Gesetz bereits experimentell nachgewiesen und darüber hinaus gezeigt, dass sich selbst mit herkömmlichen Objektiven und fokussiertem Licht Auflösungen von bis zu 16 Nanometer erreichen lassen. Damit haben die Forscher zum ersten Mal prinzipiell belegt, dass man fluoreszierende Proben auch mit fokussierender Optik auf der Nanoskala abbilden kann. In einer weiteren Studie zeigten die Wissenschaftler, dass man mit der STED-Mikroskopie feinste lithographische Strukturen von nur 40 bis 80 Nanometer Breite abbilden kann, falls man sie mit Fluoreszenzmolekülen markiert. Dies könnte für die Herstellung von Computerchips wichtig werden, da die Abbildung solcher Feinheiten bisher der Elektronenmikroskopie vorbehalten war.

Die Verkleinerung des effektiven Fluoreszenzfokus hat auch Auswirkungen auf Verfahren, mit denen man die Reaktionsbewegungen von Molekülen in Lösungen erforscht. Je kleiner die Fokalvolumina, desto effektiver und sensitiver sind diese Verfahren und desto genauer wird die Darstellung. Daher waren auch diese Verfahren durch Beugung bisher begrenzt. In einer dritten Arbeit wiesen die Göttinger Forscher jetzt nach, dass mit ihrem neuen Mikroskopie-Verfahren zum ersten Mal Messvolumina erreicht werden, die deutlich unterhalb der Auflösungsgrenze liegen. STED könnte daher in Zukunft auch die Analyse von pharmazeutischen Wirkstoffen und Protein-Interaktionen in Zellen deutlich verbessern.

Prof. Dr. Stefan W. Hell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.nanoscopy.de
http://www.mpg.de

Weitere Berichte zu: Fluoreszenzmikroskopie Formel Lichtmikroskop Nanometer

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften