Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Goldmedaille für physikalische Experimente an biologischen Molekülen

16.08.2001


International EPR Society ehrt FU-Physiker Prof. Klaus Möbius am Dienstag, dem 21. August 2001.


Prof. Dr. Klaus Möbius



Mit Mikrowellen hat wohl jeder hin und wieder zu tun: um ein Fertiggericht zu erwärmen oder die Reste vom Vortag. Eingesetzt werden Mikrowellen aber nicht nur in der Küche sondern auch in ganz anderen Bereichen, z.B. bei der Funknavigation. Für militärische Anwendungen wurde diese Technik im Kalten Krieg immer weiter perfektioniert. Da die präzise Steuerung von Raketen und Abwehrsystemen extrem hochfrequente Mikrowellen erfordert, entwickelten Experten sowohl in der Sowjetunion als auch in den USA die notwendigen Mikrowellengeneratoren: Bauteile, von denen zivile Forscher nur träumen konnten. Aber die militärischen Entwicklungen blieben streng geheim. Erst nachdem der Eiserne Vorhang gefallen war, war es möglich, an diese Grenztechnologien heranzukommen. Eine solche Technologie ist das "Orotron" aus Russland: eine Strahlungsquelle, die 360 Gigaherz Mikrowellen erzeugt. Der Experimentalphysiker Prof. Dr. Klaus Möbius von der Freien Universität Berlin arbeitet heute mit "Orotron". Er allerdings setzt es für ganz zivile Zwecke ein. Mit seinen Mitarbeitern untersucht Prof. Möbius die Prozesse, die bei der Photosynthese ablaufen sowie bei der Reparatur von Strahlenschäden an der DNA mittels des Enzyms DNA-Photolyase. Dazu hat er die Methoden der elektronenparamagnetischen Resonanz, kurz EPR, bis an die Grenze des technisch machbaren ausgereizt - eine Leistung, für die ihm die International EPR Society nun ihre höchste Auszeichnung, die Gold Medal, verleiht. Die Preisverleihung findet am Dienstag, dem 21. August 2001, anlässlich der Tagung der International Society of Magnetic Resonance in Rhodos/Griechenland statt.



Die EPR nutzt die Tatsache aus, dass sich ein einzelnes Elektron wie ein kleiner Magnet verhält und sich ähnlich einer Kompassnadel parallel zu einem äußeren Magnetfeld ausrichtet. Prinzipiell kann es sich auch genau entgegengesetzt zum äußeren Magnetfeld orientieren. Um von der parallelen in die antiparallele Ausrichtung zu wechseln, benötigt das Elektron Energie, die ihm durch geeignete Mikrowellen zugeführt werden kann: Je größer das äußere Magnetfeld desto mehr Energie kostet die Umorientierung und desto höher muß die Frequenz der Mikrowelle sein. Klaus Möbius benötigt in seinen Experimenten äußerst starke Magnetfelder, wie sie nur mit supraleitenden Magneten erzeugt werden können, und entsprechend extrem hochfrequente Mikrowellen. Bei den EPR-Experimenten setzt man die Probe einer Mikrowelle mit fester Frequenz aus und beobachtet, welche Magnetfeldstärke genau "passt", so dass die Elektronen von einer Ausrichtung in die andere wechseln können. Diese Situation wird als paramagnetische Resonanz bezeichnet. Allerdings kann die EPR nur eingesetzt werden, wenn die Proben ungepaarte Elektronen enthalten, das sind Elektronen, die in dem untersuchten System solitär - ohne ein "Partner"elektron existieren.

Die Arbeitsgruppe Möbius untersucht große Proteinkomplexe, in denen Photosynthese oder ähnliche Prozesse ablaufen. Die Messungen beginnen mit einem kurzen Laser-Lichtblitz, der in den Molekülkomplexen die entsprechenden Prozesse auslöst. Im Fall der Photosynthese wird das Licht von "Chlorophyllantennen" eingefangen und in das Reaktionszentrum des Photosynthesekomplexes weitergeleitet. Hier lösen die Lichtquanten eine Reaktionskaskade aus, in der Elektronen über die Zellmembran transportiert werden und sie dadurch wie einen Akku aufladen. Diese Reaktionen laufen in einer Reihe von molekularen Untereinheiten ab, entlang derer der Ladungstransport stattfindet. Bei diesen Zwischenschritten entstehen Zustände mit ungepaarten Elektronen, mit denen sich in den EPR-Experimenten die Prozesse bei der Photosynthese verfolgen lassen: "Ein Elektron ist wie eine Sonde, die über das ganze Molekül läuft und abtastet, welche kleinen molekularen Magnetfelder von den Atomkernen dort sind und wie sie sich verändern, wenn z.B. ein Molekül mit seinem Nachbarmolekül reagiert und dadurch seinen elektromagnetischen Zustand verändert", erklärt Klaus Möbius.

Da sich bei der EPR das von außen angelegte Magnetfeld und die zusätzlichen molekularen Felder addieren, variiert man das äußere Feld und beobachtet, wann eine Resonanz auftritt. "Als Ergebnis der Messung erhält man ein Spektrum, und dieses Spektrum spiegelt die Struktur der Anordnung von Kernen und Elektronen in solch einem biologischen Molekül wider." Damit lassen sich aber noch nicht die einzelnen Schritte bei dem Elektronentransport zeitlich verfolgen, sie dauern teilweise nicht länger als eine Nanosekunde (in einer Nanosekunde bewegt sich ein Düsenjäger, der mit einer Geschwindigkeit von 3.000 km/h fliegt, knapp den Tausendstel Teil eines Millimeters vorwärts). Daher wenden Möbius und seine Mitarbeiter verschiedene Techniken an, bei denen ein festes Magnetfeld von außen angelegt wird und ein extrem kurzer Mikrowellenpuls eingestrahlt wird. Er zwingt die magnetischen Momente kurzzeitig in eine Ordnung, die anschließend gleich wieder zerfällt. Diesen Zerfall studieren die Wissenschaftler bei Tausenden von Experimenten mit schrittweise verändertem Magnetfeld und setzen die Ergebnisse zu einem dreidimensionalen Bild zusammen. Dieses verrät ihnen Einzelheiten über die Prozesse, die bei dem Elektronentransport ablaufen, z.B. welche Moleküle dabei miteinander reagieren und welche Zwischenprodukte entstehen.

Ähnliche Experimente führt die Gruppe Möbius an dem Enzym DNA-Photolyase durch, welches im Körper besonders stark durch UV-Strahlung gefährdeter Tiere gebildet wird, beispielsweise neugeborener Känguruhs oder kleiner durchsichtiger Fische. Es ermöglicht eine sehr effiziente Reparatur von UV-Schäden an der DNA, bei denen zwei gegenüberliegende Basen an dem DNA-Strang sich zu einem Doppelmolekül verbunden haben. Die Wirkungsweise der DNA-Reparatur durch die Photolyase beruht ebenfalls auf der Absorption von Lichtenergie und dem Transport eines Elektrons, welches die fehlerhafte Bindung wieder aufspaltet.

Wenn die einzelnen Schritte bei der Photosynthese und der DNA-Reparatur genau verstanden sein werden, wird es vielleicht möglich sein, künstliche biologische Photozellen herzustellen bzw. diesen effizienten DNA-Reparaturmechanismus durch neuentwickelte Medikamente auch beim Menschen auszulösen.

Die Beobachtung der unglaublich schnellen Prozesse gelang Möbius erst, indem er die EPR-Techniken weiterentwickelte und optimierte. Mit am längsten und mühsamsten war dabei, die Kontakte zu den russischen Partnern aufzubauen und zu pflegen, um deren Wissen über die Konstruktion der notwendigen Mikrowellenbauteile nutzen zu können. "Vor zehn Jahren wären diese Experimente noch völlig undenkbar gewesen, man hätte davon träumen, aber sie nicht realisieren können. Das ist unser ziviler Spin-Off vom Ende des Kalten Krieges."


Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Klaus Möbius, Institut für Experimentalphysik der Freien Universität Berlin, Arnimallee 14, 14195 Berlin, Tel.: 030 / 838-52770, Fax: 838-56046, E-Mail: klaus.moebius@physik.fu-berlin.de

Gabriele André | idw

Weitere Berichte zu: Elektron Magnetfeld Mikrowelle Molekül Photosynthese

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie