Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Goldmedaille für physikalische Experimente an biologischen Molekülen

16.08.2001


International EPR Society ehrt FU-Physiker Prof. Klaus Möbius am Dienstag, dem 21. August 2001.


Prof. Dr. Klaus Möbius



Mit Mikrowellen hat wohl jeder hin und wieder zu tun: um ein Fertiggericht zu erwärmen oder die Reste vom Vortag. Eingesetzt werden Mikrowellen aber nicht nur in der Küche sondern auch in ganz anderen Bereichen, z.B. bei der Funknavigation. Für militärische Anwendungen wurde diese Technik im Kalten Krieg immer weiter perfektioniert. Da die präzise Steuerung von Raketen und Abwehrsystemen extrem hochfrequente Mikrowellen erfordert, entwickelten Experten sowohl in der Sowjetunion als auch in den USA die notwendigen Mikrowellengeneratoren: Bauteile, von denen zivile Forscher nur träumen konnten. Aber die militärischen Entwicklungen blieben streng geheim. Erst nachdem der Eiserne Vorhang gefallen war, war es möglich, an diese Grenztechnologien heranzukommen. Eine solche Technologie ist das "Orotron" aus Russland: eine Strahlungsquelle, die 360 Gigaherz Mikrowellen erzeugt. Der Experimentalphysiker Prof. Dr. Klaus Möbius von der Freien Universität Berlin arbeitet heute mit "Orotron". Er allerdings setzt es für ganz zivile Zwecke ein. Mit seinen Mitarbeitern untersucht Prof. Möbius die Prozesse, die bei der Photosynthese ablaufen sowie bei der Reparatur von Strahlenschäden an der DNA mittels des Enzyms DNA-Photolyase. Dazu hat er die Methoden der elektronenparamagnetischen Resonanz, kurz EPR, bis an die Grenze des technisch machbaren ausgereizt - eine Leistung, für die ihm die International EPR Society nun ihre höchste Auszeichnung, die Gold Medal, verleiht. Die Preisverleihung findet am Dienstag, dem 21. August 2001, anlässlich der Tagung der International Society of Magnetic Resonance in Rhodos/Griechenland statt.



Die EPR nutzt die Tatsache aus, dass sich ein einzelnes Elektron wie ein kleiner Magnet verhält und sich ähnlich einer Kompassnadel parallel zu einem äußeren Magnetfeld ausrichtet. Prinzipiell kann es sich auch genau entgegengesetzt zum äußeren Magnetfeld orientieren. Um von der parallelen in die antiparallele Ausrichtung zu wechseln, benötigt das Elektron Energie, die ihm durch geeignete Mikrowellen zugeführt werden kann: Je größer das äußere Magnetfeld desto mehr Energie kostet die Umorientierung und desto höher muß die Frequenz der Mikrowelle sein. Klaus Möbius benötigt in seinen Experimenten äußerst starke Magnetfelder, wie sie nur mit supraleitenden Magneten erzeugt werden können, und entsprechend extrem hochfrequente Mikrowellen. Bei den EPR-Experimenten setzt man die Probe einer Mikrowelle mit fester Frequenz aus und beobachtet, welche Magnetfeldstärke genau "passt", so dass die Elektronen von einer Ausrichtung in die andere wechseln können. Diese Situation wird als paramagnetische Resonanz bezeichnet. Allerdings kann die EPR nur eingesetzt werden, wenn die Proben ungepaarte Elektronen enthalten, das sind Elektronen, die in dem untersuchten System solitär - ohne ein "Partner"elektron existieren.

Die Arbeitsgruppe Möbius untersucht große Proteinkomplexe, in denen Photosynthese oder ähnliche Prozesse ablaufen. Die Messungen beginnen mit einem kurzen Laser-Lichtblitz, der in den Molekülkomplexen die entsprechenden Prozesse auslöst. Im Fall der Photosynthese wird das Licht von "Chlorophyllantennen" eingefangen und in das Reaktionszentrum des Photosynthesekomplexes weitergeleitet. Hier lösen die Lichtquanten eine Reaktionskaskade aus, in der Elektronen über die Zellmembran transportiert werden und sie dadurch wie einen Akku aufladen. Diese Reaktionen laufen in einer Reihe von molekularen Untereinheiten ab, entlang derer der Ladungstransport stattfindet. Bei diesen Zwischenschritten entstehen Zustände mit ungepaarten Elektronen, mit denen sich in den EPR-Experimenten die Prozesse bei der Photosynthese verfolgen lassen: "Ein Elektron ist wie eine Sonde, die über das ganze Molekül läuft und abtastet, welche kleinen molekularen Magnetfelder von den Atomkernen dort sind und wie sie sich verändern, wenn z.B. ein Molekül mit seinem Nachbarmolekül reagiert und dadurch seinen elektromagnetischen Zustand verändert", erklärt Klaus Möbius.

Da sich bei der EPR das von außen angelegte Magnetfeld und die zusätzlichen molekularen Felder addieren, variiert man das äußere Feld und beobachtet, wann eine Resonanz auftritt. "Als Ergebnis der Messung erhält man ein Spektrum, und dieses Spektrum spiegelt die Struktur der Anordnung von Kernen und Elektronen in solch einem biologischen Molekül wider." Damit lassen sich aber noch nicht die einzelnen Schritte bei dem Elektronentransport zeitlich verfolgen, sie dauern teilweise nicht länger als eine Nanosekunde (in einer Nanosekunde bewegt sich ein Düsenjäger, der mit einer Geschwindigkeit von 3.000 km/h fliegt, knapp den Tausendstel Teil eines Millimeters vorwärts). Daher wenden Möbius und seine Mitarbeiter verschiedene Techniken an, bei denen ein festes Magnetfeld von außen angelegt wird und ein extrem kurzer Mikrowellenpuls eingestrahlt wird. Er zwingt die magnetischen Momente kurzzeitig in eine Ordnung, die anschließend gleich wieder zerfällt. Diesen Zerfall studieren die Wissenschaftler bei Tausenden von Experimenten mit schrittweise verändertem Magnetfeld und setzen die Ergebnisse zu einem dreidimensionalen Bild zusammen. Dieses verrät ihnen Einzelheiten über die Prozesse, die bei dem Elektronentransport ablaufen, z.B. welche Moleküle dabei miteinander reagieren und welche Zwischenprodukte entstehen.

Ähnliche Experimente führt die Gruppe Möbius an dem Enzym DNA-Photolyase durch, welches im Körper besonders stark durch UV-Strahlung gefährdeter Tiere gebildet wird, beispielsweise neugeborener Känguruhs oder kleiner durchsichtiger Fische. Es ermöglicht eine sehr effiziente Reparatur von UV-Schäden an der DNA, bei denen zwei gegenüberliegende Basen an dem DNA-Strang sich zu einem Doppelmolekül verbunden haben. Die Wirkungsweise der DNA-Reparatur durch die Photolyase beruht ebenfalls auf der Absorption von Lichtenergie und dem Transport eines Elektrons, welches die fehlerhafte Bindung wieder aufspaltet.

Wenn die einzelnen Schritte bei der Photosynthese und der DNA-Reparatur genau verstanden sein werden, wird es vielleicht möglich sein, künstliche biologische Photozellen herzustellen bzw. diesen effizienten DNA-Reparaturmechanismus durch neuentwickelte Medikamente auch beim Menschen auszulösen.

Die Beobachtung der unglaublich schnellen Prozesse gelang Möbius erst, indem er die EPR-Techniken weiterentwickelte und optimierte. Mit am längsten und mühsamsten war dabei, die Kontakte zu den russischen Partnern aufzubauen und zu pflegen, um deren Wissen über die Konstruktion der notwendigen Mikrowellenbauteile nutzen zu können. "Vor zehn Jahren wären diese Experimente noch völlig undenkbar gewesen, man hätte davon träumen, aber sie nicht realisieren können. Das ist unser ziviler Spin-Off vom Ende des Kalten Krieges."


Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Klaus Möbius, Institut für Experimentalphysik der Freien Universität Berlin, Arnimallee 14, 14195 Berlin, Tel.: 030 / 838-52770, Fax: 838-56046, E-Mail: klaus.moebius@physik.fu-berlin.de

Gabriele André | idw

Weitere Berichte zu: Elektron Magnetfeld Mikrowelle Molekül Photosynthese

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie