Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Goldmedaille für physikalische Experimente an biologischen Molekülen

16.08.2001


International EPR Society ehrt FU-Physiker Prof. Klaus Möbius am Dienstag, dem 21. August 2001.


Prof. Dr. Klaus Möbius



Mit Mikrowellen hat wohl jeder hin und wieder zu tun: um ein Fertiggericht zu erwärmen oder die Reste vom Vortag. Eingesetzt werden Mikrowellen aber nicht nur in der Küche sondern auch in ganz anderen Bereichen, z.B. bei der Funknavigation. Für militärische Anwendungen wurde diese Technik im Kalten Krieg immer weiter perfektioniert. Da die präzise Steuerung von Raketen und Abwehrsystemen extrem hochfrequente Mikrowellen erfordert, entwickelten Experten sowohl in der Sowjetunion als auch in den USA die notwendigen Mikrowellengeneratoren: Bauteile, von denen zivile Forscher nur träumen konnten. Aber die militärischen Entwicklungen blieben streng geheim. Erst nachdem der Eiserne Vorhang gefallen war, war es möglich, an diese Grenztechnologien heranzukommen. Eine solche Technologie ist das "Orotron" aus Russland: eine Strahlungsquelle, die 360 Gigaherz Mikrowellen erzeugt. Der Experimentalphysiker Prof. Dr. Klaus Möbius von der Freien Universität Berlin arbeitet heute mit "Orotron". Er allerdings setzt es für ganz zivile Zwecke ein. Mit seinen Mitarbeitern untersucht Prof. Möbius die Prozesse, die bei der Photosynthese ablaufen sowie bei der Reparatur von Strahlenschäden an der DNA mittels des Enzyms DNA-Photolyase. Dazu hat er die Methoden der elektronenparamagnetischen Resonanz, kurz EPR, bis an die Grenze des technisch machbaren ausgereizt - eine Leistung, für die ihm die International EPR Society nun ihre höchste Auszeichnung, die Gold Medal, verleiht. Die Preisverleihung findet am Dienstag, dem 21. August 2001, anlässlich der Tagung der International Society of Magnetic Resonance in Rhodos/Griechenland statt.



Die EPR nutzt die Tatsache aus, dass sich ein einzelnes Elektron wie ein kleiner Magnet verhält und sich ähnlich einer Kompassnadel parallel zu einem äußeren Magnetfeld ausrichtet. Prinzipiell kann es sich auch genau entgegengesetzt zum äußeren Magnetfeld orientieren. Um von der parallelen in die antiparallele Ausrichtung zu wechseln, benötigt das Elektron Energie, die ihm durch geeignete Mikrowellen zugeführt werden kann: Je größer das äußere Magnetfeld desto mehr Energie kostet die Umorientierung und desto höher muß die Frequenz der Mikrowelle sein. Klaus Möbius benötigt in seinen Experimenten äußerst starke Magnetfelder, wie sie nur mit supraleitenden Magneten erzeugt werden können, und entsprechend extrem hochfrequente Mikrowellen. Bei den EPR-Experimenten setzt man die Probe einer Mikrowelle mit fester Frequenz aus und beobachtet, welche Magnetfeldstärke genau "passt", so dass die Elektronen von einer Ausrichtung in die andere wechseln können. Diese Situation wird als paramagnetische Resonanz bezeichnet. Allerdings kann die EPR nur eingesetzt werden, wenn die Proben ungepaarte Elektronen enthalten, das sind Elektronen, die in dem untersuchten System solitär - ohne ein "Partner"elektron existieren.

Die Arbeitsgruppe Möbius untersucht große Proteinkomplexe, in denen Photosynthese oder ähnliche Prozesse ablaufen. Die Messungen beginnen mit einem kurzen Laser-Lichtblitz, der in den Molekülkomplexen die entsprechenden Prozesse auslöst. Im Fall der Photosynthese wird das Licht von "Chlorophyllantennen" eingefangen und in das Reaktionszentrum des Photosynthesekomplexes weitergeleitet. Hier lösen die Lichtquanten eine Reaktionskaskade aus, in der Elektronen über die Zellmembran transportiert werden und sie dadurch wie einen Akku aufladen. Diese Reaktionen laufen in einer Reihe von molekularen Untereinheiten ab, entlang derer der Ladungstransport stattfindet. Bei diesen Zwischenschritten entstehen Zustände mit ungepaarten Elektronen, mit denen sich in den EPR-Experimenten die Prozesse bei der Photosynthese verfolgen lassen: "Ein Elektron ist wie eine Sonde, die über das ganze Molekül läuft und abtastet, welche kleinen molekularen Magnetfelder von den Atomkernen dort sind und wie sie sich verändern, wenn z.B. ein Molekül mit seinem Nachbarmolekül reagiert und dadurch seinen elektromagnetischen Zustand verändert", erklärt Klaus Möbius.

Da sich bei der EPR das von außen angelegte Magnetfeld und die zusätzlichen molekularen Felder addieren, variiert man das äußere Feld und beobachtet, wann eine Resonanz auftritt. "Als Ergebnis der Messung erhält man ein Spektrum, und dieses Spektrum spiegelt die Struktur der Anordnung von Kernen und Elektronen in solch einem biologischen Molekül wider." Damit lassen sich aber noch nicht die einzelnen Schritte bei dem Elektronentransport zeitlich verfolgen, sie dauern teilweise nicht länger als eine Nanosekunde (in einer Nanosekunde bewegt sich ein Düsenjäger, der mit einer Geschwindigkeit von 3.000 km/h fliegt, knapp den Tausendstel Teil eines Millimeters vorwärts). Daher wenden Möbius und seine Mitarbeiter verschiedene Techniken an, bei denen ein festes Magnetfeld von außen angelegt wird und ein extrem kurzer Mikrowellenpuls eingestrahlt wird. Er zwingt die magnetischen Momente kurzzeitig in eine Ordnung, die anschließend gleich wieder zerfällt. Diesen Zerfall studieren die Wissenschaftler bei Tausenden von Experimenten mit schrittweise verändertem Magnetfeld und setzen die Ergebnisse zu einem dreidimensionalen Bild zusammen. Dieses verrät ihnen Einzelheiten über die Prozesse, die bei dem Elektronentransport ablaufen, z.B. welche Moleküle dabei miteinander reagieren und welche Zwischenprodukte entstehen.

Ähnliche Experimente führt die Gruppe Möbius an dem Enzym DNA-Photolyase durch, welches im Körper besonders stark durch UV-Strahlung gefährdeter Tiere gebildet wird, beispielsweise neugeborener Känguruhs oder kleiner durchsichtiger Fische. Es ermöglicht eine sehr effiziente Reparatur von UV-Schäden an der DNA, bei denen zwei gegenüberliegende Basen an dem DNA-Strang sich zu einem Doppelmolekül verbunden haben. Die Wirkungsweise der DNA-Reparatur durch die Photolyase beruht ebenfalls auf der Absorption von Lichtenergie und dem Transport eines Elektrons, welches die fehlerhafte Bindung wieder aufspaltet.

Wenn die einzelnen Schritte bei der Photosynthese und der DNA-Reparatur genau verstanden sein werden, wird es vielleicht möglich sein, künstliche biologische Photozellen herzustellen bzw. diesen effizienten DNA-Reparaturmechanismus durch neuentwickelte Medikamente auch beim Menschen auszulösen.

Die Beobachtung der unglaublich schnellen Prozesse gelang Möbius erst, indem er die EPR-Techniken weiterentwickelte und optimierte. Mit am längsten und mühsamsten war dabei, die Kontakte zu den russischen Partnern aufzubauen und zu pflegen, um deren Wissen über die Konstruktion der notwendigen Mikrowellenbauteile nutzen zu können. "Vor zehn Jahren wären diese Experimente noch völlig undenkbar gewesen, man hätte davon träumen, aber sie nicht realisieren können. Das ist unser ziviler Spin-Off vom Ende des Kalten Krieges."


Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Klaus Möbius, Institut für Experimentalphysik der Freien Universität Berlin, Arnimallee 14, 14195 Berlin, Tel.: 030 / 838-52770, Fax: 838-56046, E-Mail: klaus.moebius@physik.fu-berlin.de

Gabriele André | idw

Weitere Berichte zu: Elektron Magnetfeld Mikrowelle Molekül Photosynthese

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften