Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Goldmedaille für physikalische Experimente an biologischen Molekülen

16.08.2001


International EPR Society ehrt FU-Physiker Prof. Klaus Möbius am Dienstag, dem 21. August 2001.


Prof. Dr. Klaus Möbius



Mit Mikrowellen hat wohl jeder hin und wieder zu tun: um ein Fertiggericht zu erwärmen oder die Reste vom Vortag. Eingesetzt werden Mikrowellen aber nicht nur in der Küche sondern auch in ganz anderen Bereichen, z.B. bei der Funknavigation. Für militärische Anwendungen wurde diese Technik im Kalten Krieg immer weiter perfektioniert. Da die präzise Steuerung von Raketen und Abwehrsystemen extrem hochfrequente Mikrowellen erfordert, entwickelten Experten sowohl in der Sowjetunion als auch in den USA die notwendigen Mikrowellengeneratoren: Bauteile, von denen zivile Forscher nur träumen konnten. Aber die militärischen Entwicklungen blieben streng geheim. Erst nachdem der Eiserne Vorhang gefallen war, war es möglich, an diese Grenztechnologien heranzukommen. Eine solche Technologie ist das "Orotron" aus Russland: eine Strahlungsquelle, die 360 Gigaherz Mikrowellen erzeugt. Der Experimentalphysiker Prof. Dr. Klaus Möbius von der Freien Universität Berlin arbeitet heute mit "Orotron". Er allerdings setzt es für ganz zivile Zwecke ein. Mit seinen Mitarbeitern untersucht Prof. Möbius die Prozesse, die bei der Photosynthese ablaufen sowie bei der Reparatur von Strahlenschäden an der DNA mittels des Enzyms DNA-Photolyase. Dazu hat er die Methoden der elektronenparamagnetischen Resonanz, kurz EPR, bis an die Grenze des technisch machbaren ausgereizt - eine Leistung, für die ihm die International EPR Society nun ihre höchste Auszeichnung, die Gold Medal, verleiht. Die Preisverleihung findet am Dienstag, dem 21. August 2001, anlässlich der Tagung der International Society of Magnetic Resonance in Rhodos/Griechenland statt.



Die EPR nutzt die Tatsache aus, dass sich ein einzelnes Elektron wie ein kleiner Magnet verhält und sich ähnlich einer Kompassnadel parallel zu einem äußeren Magnetfeld ausrichtet. Prinzipiell kann es sich auch genau entgegengesetzt zum äußeren Magnetfeld orientieren. Um von der parallelen in die antiparallele Ausrichtung zu wechseln, benötigt das Elektron Energie, die ihm durch geeignete Mikrowellen zugeführt werden kann: Je größer das äußere Magnetfeld desto mehr Energie kostet die Umorientierung und desto höher muß die Frequenz der Mikrowelle sein. Klaus Möbius benötigt in seinen Experimenten äußerst starke Magnetfelder, wie sie nur mit supraleitenden Magneten erzeugt werden können, und entsprechend extrem hochfrequente Mikrowellen. Bei den EPR-Experimenten setzt man die Probe einer Mikrowelle mit fester Frequenz aus und beobachtet, welche Magnetfeldstärke genau "passt", so dass die Elektronen von einer Ausrichtung in die andere wechseln können. Diese Situation wird als paramagnetische Resonanz bezeichnet. Allerdings kann die EPR nur eingesetzt werden, wenn die Proben ungepaarte Elektronen enthalten, das sind Elektronen, die in dem untersuchten System solitär - ohne ein "Partner"elektron existieren.

Die Arbeitsgruppe Möbius untersucht große Proteinkomplexe, in denen Photosynthese oder ähnliche Prozesse ablaufen. Die Messungen beginnen mit einem kurzen Laser-Lichtblitz, der in den Molekülkomplexen die entsprechenden Prozesse auslöst. Im Fall der Photosynthese wird das Licht von "Chlorophyllantennen" eingefangen und in das Reaktionszentrum des Photosynthesekomplexes weitergeleitet. Hier lösen die Lichtquanten eine Reaktionskaskade aus, in der Elektronen über die Zellmembran transportiert werden und sie dadurch wie einen Akku aufladen. Diese Reaktionen laufen in einer Reihe von molekularen Untereinheiten ab, entlang derer der Ladungstransport stattfindet. Bei diesen Zwischenschritten entstehen Zustände mit ungepaarten Elektronen, mit denen sich in den EPR-Experimenten die Prozesse bei der Photosynthese verfolgen lassen: "Ein Elektron ist wie eine Sonde, die über das ganze Molekül läuft und abtastet, welche kleinen molekularen Magnetfelder von den Atomkernen dort sind und wie sie sich verändern, wenn z.B. ein Molekül mit seinem Nachbarmolekül reagiert und dadurch seinen elektromagnetischen Zustand verändert", erklärt Klaus Möbius.

Da sich bei der EPR das von außen angelegte Magnetfeld und die zusätzlichen molekularen Felder addieren, variiert man das äußere Feld und beobachtet, wann eine Resonanz auftritt. "Als Ergebnis der Messung erhält man ein Spektrum, und dieses Spektrum spiegelt die Struktur der Anordnung von Kernen und Elektronen in solch einem biologischen Molekül wider." Damit lassen sich aber noch nicht die einzelnen Schritte bei dem Elektronentransport zeitlich verfolgen, sie dauern teilweise nicht länger als eine Nanosekunde (in einer Nanosekunde bewegt sich ein Düsenjäger, der mit einer Geschwindigkeit von 3.000 km/h fliegt, knapp den Tausendstel Teil eines Millimeters vorwärts). Daher wenden Möbius und seine Mitarbeiter verschiedene Techniken an, bei denen ein festes Magnetfeld von außen angelegt wird und ein extrem kurzer Mikrowellenpuls eingestrahlt wird. Er zwingt die magnetischen Momente kurzzeitig in eine Ordnung, die anschließend gleich wieder zerfällt. Diesen Zerfall studieren die Wissenschaftler bei Tausenden von Experimenten mit schrittweise verändertem Magnetfeld und setzen die Ergebnisse zu einem dreidimensionalen Bild zusammen. Dieses verrät ihnen Einzelheiten über die Prozesse, die bei dem Elektronentransport ablaufen, z.B. welche Moleküle dabei miteinander reagieren und welche Zwischenprodukte entstehen.

Ähnliche Experimente führt die Gruppe Möbius an dem Enzym DNA-Photolyase durch, welches im Körper besonders stark durch UV-Strahlung gefährdeter Tiere gebildet wird, beispielsweise neugeborener Känguruhs oder kleiner durchsichtiger Fische. Es ermöglicht eine sehr effiziente Reparatur von UV-Schäden an der DNA, bei denen zwei gegenüberliegende Basen an dem DNA-Strang sich zu einem Doppelmolekül verbunden haben. Die Wirkungsweise der DNA-Reparatur durch die Photolyase beruht ebenfalls auf der Absorption von Lichtenergie und dem Transport eines Elektrons, welches die fehlerhafte Bindung wieder aufspaltet.

Wenn die einzelnen Schritte bei der Photosynthese und der DNA-Reparatur genau verstanden sein werden, wird es vielleicht möglich sein, künstliche biologische Photozellen herzustellen bzw. diesen effizienten DNA-Reparaturmechanismus durch neuentwickelte Medikamente auch beim Menschen auszulösen.

Die Beobachtung der unglaublich schnellen Prozesse gelang Möbius erst, indem er die EPR-Techniken weiterentwickelte und optimierte. Mit am längsten und mühsamsten war dabei, die Kontakte zu den russischen Partnern aufzubauen und zu pflegen, um deren Wissen über die Konstruktion der notwendigen Mikrowellenbauteile nutzen zu können. "Vor zehn Jahren wären diese Experimente noch völlig undenkbar gewesen, man hätte davon träumen, aber sie nicht realisieren können. Das ist unser ziviler Spin-Off vom Ende des Kalten Krieges."


Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Klaus Möbius, Institut für Experimentalphysik der Freien Universität Berlin, Arnimallee 14, 14195 Berlin, Tel.: 030 / 838-52770, Fax: 838-56046, E-Mail: klaus.moebius@physik.fu-berlin.de

Gabriele André | idw

Weitere Berichte zu: Elektron Magnetfeld Mikrowelle Molekül Photosynthese

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Schneller Energietransport zwischen ungleichen Partnern
29.09.2016 | Julius-Maximilians-Universität Würzburg

nachricht Das Ribosom als Kontrolleur
29.09.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experimentalphysik - Protonenstrahlung nach explosiver Vorarbeit

LMU-Physiker haben mit Nanopartikeln und Laserlicht Protonenstrahlung produziert. Sie könnte künftig neue Wege in der Strahlungsmedizin eröffnen und bei der Tumorbekämpfung helfen.

Stark gebündeltes Licht entwickelt eine enorme Kraft. Ein Team um Professor Jörg Schreiber vom Lehrstuhl für Experimentalphysik - Medizinische Physik der LMU...

Im Focus: Der perfekte Sonnensturm

Ein geomagnetischer Sturm hat sich als Glücksfall für die Wissenschaft erwiesen. Jahrzehnte rätselte die Forschung, wie hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam mit einem internationalen Team eine Erklärung gefunden: Entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits: „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen.“ Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: Neuer Schalter entscheidet zwischen Reparatur und Zelltod

Eine der wichtigsten Entscheidungen, die eine Zelle zu treffen hat, ist eine Frage von Leben und Tod: kann ein Schaden repariert werden oder ist es sinnvoller zellulären Selbstmord zu begehen um weitere Schädigung zu verhindern? In einer Kaskade eines bisher wenig verstandenen Signalweges konnten Forscher des Exzellenzclusters für Alternsforschung CECAD an der Universität zu Köln ein Protein identifizieren (UFD-2), das eine Schlüsselrolle in dem Prozess einnimmt. Die Ergebnisse wurden in der Fachzeitschrift Nature Structural & Molecular Biology veröffentlicht.

Die genetische Information einer jeden Zelle liegt in ihrer Sequenz der DNA-Doppelhelix. Doppelstrangbrüche der DNA, die durch Strahlung hervorgerufen werden...

Im Focus: Forscher entwickeln quantenphotonischen Schaltkreis mit elektrischer Lichtquelle

Optische Quantenrechner könnten die Computertechnologie revolutionieren. Forschern um Wolfram Pernice von der Westfälischen Wilhelms-Universität Münster sowie Ralph Krupke, Manfred Kappes und Carsten Rockstuhl vom Karlsruher Institut für Technologie ist es nun gelungen, einen quantenoptischen Versuchsaufbau auf einem Chip zu platzieren. Damit haben sie eine Voraussetzung erfüllt, um photonische Schaltkreise für optische Quantencomputer nutzbar machen zu können.

Ob für eine abhörsichere Datenverschlüsselung, die ultraschnelle Berechnung riesiger Datenmengen oder die sogenannte Quantensimulation, mit der hochkomplexe...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Heidelberg Laureate Forum: Eine Veranstaltung mit Zukunft

29.09.2016 | Veranstaltungen

Wissenschaftsjahr Meere und Ozeane - Oktober 2016

29.09.2016 | Veranstaltungen

EEHE 2017 – Strom statt Benzin. Experten diskutieren die Umsetzung neuester Fahrzeugkonzepte. Call vor Papers endet am 31.10.2016!

28.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schwerste Atome im Rampenlicht

29.09.2016 | Physik Astronomie

Zelluläres Kräftemessen

29.09.2016 | Interdisziplinäre Forschung

K 2016: Von OLED-Verkapselung bis Plagiatschutz

29.09.2016 | Messenachrichten