Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Photokatalysator zur Wasserstofferzeugung arbeitet bei Bestrahlung mit Licht im sichtbaren Bereich

23.05.2005


Energie nutzbar zu machen ist ein zentrales Problem unserer Zivilisation. Könnten wir nicht einfach wie die Grünpflanzen per Photosynthese Licht in chemische Energie umwandeln? Im Prinzip ja: So lässt sich Wasserstoff photokatalytisch aus Wasser freisetzen, der Wasserstoff betreibt dann stromerzeugende Brennstoffzellen - eine saubere Energiegewinnung, die ohne fossile Brennstoffe auskommt. An sich sind photokatalytische Zellen sehr einfach aufgebaut. Den Katalysator in Wasser geben, mit Sonnenlicht bestrahlen und den Wasserstoff auffangen - fertig. Worauf warten wir also noch? So einfach ist es eben doch nicht. "Alles steht und fällt mit dem Katalysator," erklärt Akihiko Kudo von der Tokyo University of Science. "Damit das System wirtschaftlich arbeitet, muss der Katalysator das Sonnenlicht effektiv nutzen." Es gibt zwar schon eine ganze Reihe Photokatalysatoren, die Wasser unter UV-Bestrahlung spalten. Aber dabei wird ein großer Teil des Sonnenlichts nicht genutzt, denn fast alle dieser Katalysatoren können den sichtbaren Lichtanteil nicht verwerten. Kudos Team hat nun einen neuen Katalysator entwickelt, der unter Bestrahlung mit sichtbarem Licht arbeitet.



Warum ist es so schwierig, den "perfekten" Photokatalysator zu entwickeln? Lichtteilchen sind kleine Energiepakete. Fallen sie auf ein lichtempfindliches Halbleitermaterial, geben sie ihre Energie an dessen Elektronen ab. Ein so angeregtes Elektron kann sich vom Atomverband lösen, wenn seine Energie ausreicht. Das Elektron geht dann von einem Valenzband genannten Energieniveau in das Leitungsband über. Im Valenzband hinterlässt es ein "Loch". Löcher können formal wie positiv geladene Teilchen behandelt werden. Zwischen Valenz- und Leitungsband liegt eine verbotene Zone, die "Bandlücke". Diese Energiedifferenz muss zur Wellenlänge des Lichts passen, damit es effektiv absorbiert werden kann. Mit der richtigen Mischung dotierter Halbleiter gelang es den Wissenschaftlern, ein Material mit passender Bandlücke auszutüfteln: Ihr Katalysator ist eine feste Lösung aus Zinksulfid, Kupfer-Indium-Sulfid und Silber-Indium-Sulfid (ZnS-CuInS2-AgInS2). Beladen mit dem Metall Ruthenium entsteht ein hochaktiver Photokatalysator mit einer deutlich breiteren Wellenlängenabsorption.



Damit die durch das Licht erzeugten Elektronen und Löcher für chemische Reaktionen, wie der Entstehung von Wasserstoff, zur Verfügung stehen, müssen sie auf gelöste Substanzen übertragen werden. Dies läuft an speziellen reaktiven Stellen auf der Oberfläche des Photokatalysators ab und funktioniert im konkreten Fall, wenn Sulfide (S2-) und Sulfite (SO32-) als so genannte Opferreagenzien in der Lösung sind, die die Löcher irreversibel aufnehmen. Positiv geladene Wasserstoffionen nehmen die Elektronen auf und bilden Wasserstoffgas.

"Wenn die praktische Anwendung gelingt", so Kudo, "ließe sich Wasserstoff mit Hilfe unerwünschter Nebenprodukte von Chemieanlagen und Kraftwerken gewinnen: Schwefelwasserstoff und Schwefeldioxid sind die Ausgangstoffe für Sulfide und Sulfite."

Kontakt:
Prof. Dr. A. Kudo
Departmen of Applied Chemistry
Faculty of Science
Tokyo University of Science
1-3 Kagurazaka
Shinjuku-ku
Tokyo 162-8601
Japan
Tel.: (+81) 33235-8267
Fax: (+81) 33235-2214
E-mail: a-kudo@rs.kagu.tus.ac.jp

Angewandte Chemie Presseinformation Nr. 19/2005
Angew. Chem. 2005, 117

ANGEWANDTE CHEMIE
Postfach 101161
D-69451 Weinheim
Tel.: 06201/606 321
Fax: 06201/606 331
E-Mail: angewandte@wiley-vch.de

| idw
Weitere Informationen:
http://www.gdch.de
http://www.angewandte.de

Weitere Berichte zu: Bestrahlung Elektron Katalysator Photokatalysator Sonnenlicht Wasserstoff

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen
22.06.2017 | Heinrich-Heine-Universität Düsseldorf

nachricht Im Mikrokosmos wird es bunt: 124 Farben dank RGB-Technologie
22.06.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie