Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Multiple Sulfatasedefizienz: Atomare Struktur eines wichtigen Enzyms entschlüsselt

20.05.2005


Molekulare Basis der Multiplen Sulfatasedefizienz (MSD): Die Struktur des Formylglycin-generierenden Enzyms (FGE) ist als Bänderdiagramm in grau dargestellt. Krankheitsverursachende Mutationen, die bislang in MSD-Patienten gefunden wurden, sind als farbige Kugeln hervorgehoben. Die Farbe gibt an, ob die jeweilige Mutation zur Destabilisierung der Struktur (rosa), zur Hemmung der Sulfatase-Bindung (blau) oder zur Blockierung der Enzymaktivität (türkis) führt.


Einen wichtigen Baustein im Verständnis der Multiplen Sulfatasedefizienz (MSD), einer seltenen und tödlich verlaufenden Erbkrankheit bei Kindern, haben Mediziner, Biochemiker und Biologen der Universität Göttingen entschlüsselt:


Sie konnten die atomare Struktur eines Enzyms ermitteln, das die Sulfatasen in menschlichen Zellen aktiviert. Bei MSD kommt es zu einem Ausfall aller Sulfataseaktivitäten, der massive Funktionsstörungen zahlreicher Organe nach sich zieht. Die Suche nach Ursachen für das Fehlen aller Sulfatasen bei MSD-Patienten führte die Göttinger Forscher um den Biochemiker Prof. Dr. Kurt von Figura zunächst zu der Entdeckung, dass die Sulfatasen durch eine einzigartige neue Aminosäure mit dem Namen Formylglycin gekennzeichnet sind. Jetzt haben die Wissenschaftler das Enzym in seinen Strukturen aufgeklärt, das diese besondere Aminosäure produziert. Die nun bekannten Strukturen des so genannten Formylglycin-generierenden Enzyms erlauben Einblicke in die Ursachen der Multiplen Sulfatasedefizienz, die durch genetische Mutationen ausgelöst wird. Über die aktuellen Forschungsergebnisse berichtet die Fachzeitschrift CELL in ihrer Ausgabe vom 20. Mai 2005.

Multiple Sulfatasedefizienz: Atomare Struktur eines wichtigen Enzyms entschlüsselt

Göttinger Wissenschaftler leisten einen weiteren Beitrag zum Verständnis der seltenen Erbkrankheit

Einen wichtigen Baustein im Verständnis der Multiplen Sulfatasedefizienz (MSD), einer seltenen und tödlich verlaufenden Erbkrankheit bei Kindern, haben Mediziner, Biochemiker und Biologen der Universität Göttingen entschlüsselt: Sie konnten die atomare Struktur eines Enzyms ermitteln, das die Sulfatasen in menschlichen Zellen aktiviert. Bei MSD kommt es zu einem Ausfall aller Sulfataseaktivitäten, der massive Funktionsstörungen zahlreicher Organe nach sich zieht. Die Suche nach Ursachen für das Fehlen aller Sulfatasen bei MSD-Patienten führte die Göttinger Forscher um den Biochemiker Prof. Dr. Kurt von Figura zunächst zu der Entdeckung, dass die Sulfatasen durch eine einzigartige neue Aminosäure mit dem Namen Formylglycin gekennzeichnet sind. Jetzt haben die Wissenschaftler das Enzym in seinen Strukturen aufgeklärt, das diese besondere Aminosäure produziert. Die nun bekannten Strukturen des so genannten Formylglycin-generierenden Enzyms erlauben Einblicke in die Ursachen der Multiplen Sulfatasedefizienz, die durch genetische Mutationen ausgelöst wird. Über die aktuellen Forschungsergebnisse berichtet die Fachzeitschrift CELL in ihrer Ausgabe vom 20. Mai 2005.

Bei den Sulfatasen handelt es sich um Enzyme, die Schwefelsäuregruppen bei einer Vielzahl von Molekülen abspalten. Fehlen diese Sulfatasen, werden die Entwicklung und die Funktion vieler Organsysteme, darunter auch das Nervensystem, gestört. Bereits vor zwei Jahren konnten die Biochemiker Prof. Dr. Thomas Dierks und Dr. Bernhard Schmidt das Gen isolieren, dessen Defekt den Ausfall der Sulfataseaktivitäten verursacht. Dieses Gen verschlüsselt eben jenes Formylglycin-generierende Enzym (FGE), das in den Sulfatasen die Aminosäure Formylglycin erzeugt. Diese einzigartige Aminosäure, die von den Göttinger Wissenschaftlern unter der Leitung von Prof. von Figura erstmals vor zehn Jahren nachgewiesen wurde, ist allein in Sulfatasen zu finden und tritt nirgendwo sonst in der Natur auf. Dabei ist das Formyglycin in den Sulfatasen an strategisch wichtiger Stelle angesiedelt: Die Aminosäure sitzt in dem Bereich, der für die Abspaltung von Schwefelsäuregruppen verantwortlich ist. "Damit kontrolliert das Formylglycin-generierende Enzym die Aktivitäten aller 16 Sulfatasen, die beim Menschen bekannt sind", erläutert Prof. Dierks. Allerdings gab die im Jahr 2003 ermittelte Gensequenz keinen Aufschluss über die tatsächliche Funktionsweise des FGE.

Um das Enzym weiter erforschen zu können, haben die Göttinger Biochemiker das FGE in gentechnologischer Produktion in größerer Menge hergestellt. Daraus konnte der Strukturbiologe Dr. Markus Rudolph zusammen mit Dr. Achim Dickmanns Kristalle des Enzyms züchten. Diese Kristalle lieferten in sehr hoher Auflösung eine räumliche Struktur, die auf den ersten Blick sehr "unregelmäßig" erscheint. "So ungewöhnlich die Aminosäure Formylglycin ist, so außergewöhnlich ist auch die Struktur des Enzyms, das sie erzeugt", so Dr. Rudolph. Mit der Strukturanalyse erhielten die Wissenschaftler zugleich einen Einblick in die überraschende Funktion des Enzyms. "Das FGE benutzt molekularen Sauerstoff, den es auf eine erstaunlich einfache, bislang nicht für möglich gehaltene Weise in die Sulfatasen einbauen kann - ohne die Beteiligung von Metallen oder anderen kompliziert aufgebauten Faktoren", sagt der Wissenschaftler, der in der Abteilung für Molekulare Strukturbiologie eine von der Deutschen Forschungsgemeinschaft geförderte Forschernachwuchsgruppe leitet.

Die Göttinger Forscher wollen nun an einer weiteren Aufklärung der Funktionsweise von FGE arbeiten. Das Enzym ist der erste funktionell charaktersierte Vertreter einer neuartigen, weitverbreiteten Proteinfamilie, die in ein- und vielzelligen Organismen von Bakterien bis zum Menschen nachweisbar ist. "So ist die Multiple Sulfatasedefizienz ein Beispiel dafür, wie durch die Suche nach den Ursachen einer seltenen Erkrankung das Verständnis der gesamten Biologie erweitert werden kann", betont Prof. von Figura. Das Formylglycin-generierende Enzym wird inzwischen in einem biotechnologischen Verfahren eingesetzt, um mehrere Sulfatasen effizient herzustellen und sie für die Therapie von einzelnen Sulfatasedefizienz-Erkrankungen zu nutzen.

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-goettingen.de/

Weitere Berichte zu: Aminosäure Enzym FGE Formylglycin MSD Multiplen Sulfatasedefizienz Sulfatasen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik