Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supraleitende Exoten

07.08.2001


Ungewöhnliche Silber-Fluor-Verbindungen sollen potenzielle Hochtemperatur-Supraleiter sein

Bereits vor fast hundert Jahren wurde das Phänomen der Supraleitung entdeckt - und hat bis heute nichts von seiner Faszination verloren. In den Bann dieser Faszination sind auch Roald Hoffmann (Nobelpreis für Chemie 1981 zusammen mit K. Fukui) und Wojciech Grochala geraten. Anhand von theoretischen Betrachtungen sagen die beiden Chemiker nun vorher, dass eine ausgefallene Verbindungsklasse, so genannte Fluorargentate, Hochtemperatur-Supraleiter sein sollen.

Viel hatte man sich versprochen, als man Materialien entdeckte, die bei Temperaturen nahe dem absoluten Nullpunkt, das sind -273 °C, ihren Ohmschen Widerstand verlieren und so den elektrischen Strom quasi verlustfrei
transportieren. Der richtige Stoff, um daraus zum Beispiel Kabel und Stromspeicher zu konstruieren! Aber wegen der Energie und Kosten für die notwendige Kühlung war die technische Umsetzung unrentabel. Neue Euphorie kam auf, als in den 1980er Jahren Hochtemperatur-Supraleiter entwickelt wurden.

Hochtemperatur ist dabei relativ: Als Hochtemperatur-Supraleiter bezeichnet man Materialien, die oberhalb -196 °C, der Temperatur flüssigen Stickstoffs, supraleitend werden. Die Hoffnung auf ein Material, das schon bei Raumtemperatur supraleitend ist, hat sich aber nicht erfüllt. Den Temperatur-Weltrekord halten bisher keramische Kupfer-Sauerstoff-Verbindungen, so gannte Oxocuprate, die bereits bei -109 °C supraleitend werden.

Hoffmann und Grochala setzen nun auf ausgesprochene Exoten: Fluorargentate. Wie kommen sie ausgerechnet auf diese nicht alltäglichen Verbindungen aus Fluor- und ungewöhnlich hoch geladenen Silberionen (lat. argentum)? "Die elektronischen Eigenschaften der Fluorargentate sind den Verhältnissen in Oxocupraten sehr ähnlich," erläutern die Forscher. "Und genauso leicht wie diese können ihre Kristallgitter in Schwingungen versetzt werden." Schwingungen des Gitters spielen eine wichtige Rolle bei der Supraleitung. Ein Elektron, das innerhalb des Gitters wandert, kann dessen Lage geringfügig verzerren. Diese Verformung zieht ein zweites Elektron an. Das zweite Elektron bewirkt wiederum eine Verformung des Gitters und so eine Anziehung des ersten Elektrons. Die so entstehenden Elektronenpaare sind den gängigen Modellen zufolge das Geheimnis der Supraleitung.

"Leider wird es wohl nicht so schnell gehen, unsere Vorhersagen zu verifizieren, denn Fluorargentate sind ausgesprochen schwer zu synthetisieren," dämpfen die
beiden Chemiker überzogene Erwartungen. Aber wer weiß, vielleicht bringen die dabei gewonnenen Erkenntnisse uns einen Schritt weiter in Richtung Raumtemperatur-Supraleiter?

Kontakt:

Prof. Dr. R. Hoffmann
Department of Chemistry and Chemical Biology and
Cornell Center for Materials Research
Cornell University
Ithaca, NJ, 18453-1301
USA

Fax: (+1) 607-255-5707

E-Mail: rh34@cornell.edu


Quelle: Angewandte Chemie 2001, 113 (15), 2616 - 2859
Hrsg.: Gesellschaft Deutscher Chemiker (GDCh)

Dr. Kurt Begitt | idw

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics