Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fluoreszenzreader für die Zelldiagnostik

26.04.2005


Prof. Dr. Herbert Schneckenburger vom Institut für Angewandte Forschung (IAF) der Fachhochschule Aalen hat mit seiner Arbeitsgruppe ein Verfahren entwickelt, das es gestattet, Membranen lebender Zellen gezielt zu untersuchen, ohne diese bei der Messung zu beschädigen. Die eine Zelle umgebende Zellmembran ist nur wenige Nanometer dick und damit wesentlich dünner als andere Zellorganellen. Werden Zellen mit einem fluoreszierenden Marker versehen und mit einer Kamera optisch aufgenommen, standen die Membranen bisher sprichwörtlich im Schatten des sie überstrahlenden Zellinnern. In Zusammenarbeit mit Wolfgang Strauß vom Institut für Lasertechnologien in der Medizin und Messtechnik an der Universität Ulm machte sich nun der Professor im Studiengang Optoelektronik das Phänomen der Totalreflexion für eine schichtgenaue Zelldiagnostik zunutze, die er auf der Hannover Messe 2005 erstmals der Öffentlichkeit vorstellte.



Im Umkehrpunkt des Laserstrahles klingt bei der Totalreflexion das elektromagnetische Feld jenseits des Reflexionsmediums exponentiell ab. Diese Energie ist recht gering, reicht aber aus, um markierte Substanzen zum Fluoreszieren zu bringen. Da das Feld aufgrund seiner geringen Energie nicht sonderlich tief in die Substanz eindringt, wird im Falle einer organischen Zelle nur deren Membran angeregt. Die fluoreszierende Membran wird dann in Abhängigkeit von der Eindringtiefe des elektromagnetischen Feldes fotografiert. Aus den Aufnahmen wiederum lassen sich beispielsweise wesentliche Erkenntnisse über Aufbau und Zusammensetzung der Membran lebender Zellen gewinnen.



Als Reflexionsmedium verwenden die Aalener Forscher einen speziell angepassten Glasboden. In diesem breiten sich acht parallele Teilstrahlen eines Argonlasers über mehrfache Totalreflexion aus. Die Ausbreitung entspricht einem regelmäßigen Zickzackmuster, das sich in acht Reihen nebeneinander präzise wiederholt. Auf dem Glasboden ist eine gitterförmige Mikrotiterplatte angebracht, deren Hohlräume in Strahlrichtung so angeordnet sind, dass sie mit den oberen Umkehrpunkten des totalreflektierten Laserlichtes zusammenfallen. Auf diese Weise können die einzelnen markierten Proben in den Hohlräumen der Mikrotiterplatte simultan angeregt werden. Bei zehn Umkehrpunkten können so 80 Proben gleichzeitig zum Fluoreszieren gebracht werden. Die Fluoreszenzstrahlung der angeregten Proben wird dann von einer hochauflösenden Digitalkamera mit Vorsatzoptik für die Mikroskopie und Makrofotografie aufgenommen.

"Der TIR Fluoreszenzreader eignet sich für die Diagnostik lebender Organellen sowie für das Screening pharmazeutischer Wirkstoffe", erläuterte Prof. Dr. Schneckenburger in Hannover die Vorteile des innovativen Verfahrens, das bereits auf reges Interesse der pharmazeutischen sowie der optischen Industrie gestoßen ist. Aufgrund der simultanen Anregung der Proben lassen sich Veränderungen in der Zellstruktur, die durch Krankheiten, bestimmte Medikamente oder durch einen hohen Cholesteringehalt bedingt sind, schnell visuell erfassen.

Dr. Marc Dressler | idw
Weitere Informationen:
http://www.fh-aalen.de

Weitere Berichte zu: Fluoreszenzreader Membran Probe Totalreflexion Zelldiagnostik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten