Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Perfektes Bewegungssehen bei rasanten Fliegen

13.04.2005


Anhand von Computersimulationen entdecken Max-Planck-Forscher die rasche Anpassung von Nervenzellen im Fliegenhirn


Darstellung der Experimente und Modellierungen zum Bewegungssehen der Schmeißfliege. A: Das Sehsystem der Schmeißfliege schematisch dargestellt. Rechts in der Skizze ist die Nervenzelle (H1) markiert, an der die Messungen vorgenommen wurden. B: Schematische Darstellung des Reichardt-Detektors. Dargestellt sind zwei benachbarte Lichtrezeptoren (oben), denen jeweils ein Bewegungsdetektor nachgeschaltet ist, der aus zwei Filtern (LP = Tiefpass und HP = Hochpass) besteht. Ein Multiplikator (M) verrechnet die unterschiedlichen Helligkeitssignale zu jedem Zeitpunkt. C: Gemessene Adaptation der Nervenzelle auf Schwankungen in der Bewegungsgeschwindigkeit. Die Geschwindigkeitsangabe in Hz bedeutet die Anzahl Streifen, die an einem Punkt im Sehfeld der Fliege pro Sekunde vorbeilaufen. Je größer die Änderungen der Geschwindigkeit, desto unempfindlicher ist die Reaktion der Zelle, erkennbar an der abnehmenden Steilheit der Kurve von 1 bis 10 Hz. D: Die Computersimulation lieferte Resultate, die mit den an der Zelle gemessenen Reaktionen gut übereinstimmen. Bild: Max-Planck-Institut für Neurobiologie, Martinsried



Wissenschaftler am Max-Planck-Institut für Neurobiologie in Martinsried bei München haben sich darauf spezialisiert, die Verschaltungen von Nervenzellen in Computer-Modellen zu simulieren und am einfachen Sehzentrum der Schmeißfliege "in natura" zu überprüfen. Gemeinsam mit Haim Sompolinsky von der Hebräischen Universität in Jerusalem haben Alexander Borst und Virginia Flanagin nun erstmals entdeckt, dass die extrem schnelle Anpassung (Adaptation) der Nervenzellen des Sehzentrums ein wichtiger Mechanismus des Bewegungssehens ist. Und dies war nur auf der Basis von Computer-Modellierungen möglich. Die Ergebnisse in der aktuellen Ausgabe von PNAS (12. April 2005) revidieren bisherige Theorien über die Adaptation des Bewegungssehens und könnten für andere sensorische Systeme neue Erkenntnisse liefern.



Wir alle kennen das Phänomen: Wenn wir aus einem dunklen Zimmer hinaus ins helle Sonnenlicht treten, sind wir geblendet. Wir kneifen die Augen zusammen und schatten sie mit der Hand ab. Bis zu einer Minute und länger dauert es bis wir wieder richtig sehen. Dasselbe auf dem umgekehrten Weg: Wenn wir einen dunklen Raum betreten, müssen wir erst stehen bleiben und warten, bevor die Konturen der Gegenstände wie aus dem Nichts hervorzutreten beginnen. So wie sich unsere Augen auf verschiedene Lichtbedingungen einstellen, so kann sich das Bewegungs-Sehsystem, welches darauf spezialisiert ist, die Bewegung vor unseren Augen nach ihrer Richtung zu unterscheiden, an verschiedene Bedingungen anpassen. Im Gegensatz zur Anpassung an die Helligkeit geschieht das aber sehr viel schneller. Bei Fliegen innerhalb einer Sekunde.

Biologen bezeichnen die oben beschriebenen Vorgänge der Anpassung an verschiedene Umweltbedingungen allgemein als Adaptation. Durch Adaptation wird sichergestellt, dass unsere Sinnessysteme auch unter wechselnden Bedingungen voll funktionstüchtig bleiben und stets mit maximaler Empfindlichkeit ein Maximum an Information an nachgeschaltete Nervenzentren weiterleiten. Bislang waren die Wissenschaftler der Auffassung, dass der Änderung der Empfindlichkeit stets eine Anpassung der Verarbeitungsparameter in den beteiligten Nervensystemen zugrunde liegt, z.B. eine Veränderung der Zeitkonstante. Borst und Kollegen konnten jedoch zeigen, dass die Adaptation beim Bewegungssehen von Fliegen nicht notwendigerweise eine solche Neueinstellung der Systemparameter erfordert: das Auswerte-System leistet dies automatisch, und erfolgt deshalb so rasch.

Bewegungssehen beruht auf der komplexen Verrechnung von Bildern, die über die Netzhaut wandern und die Rezeptoren reizen. Dabei müssen die bewegten Bilder, die durch unsere Eigenbewegung auf der Netzhaut hervorgerufen werden, und die bewegten Bilder, die durch die Bewegung von Objekten vor einem statischen Hintergrund entstehen, unterschieden werden. Die Bewegungsinformationen werden in den Sehzentren des Gehirns, die den Lichtrezeptoren in der Netzhaut übergeordnet sind, verrechnet. Diese Verrechnungen lassen sich in Form von Schaltplänen darstellen und im Computermodell simulieren. Am Max-Planck-Institut für Neurobiologie in Martinsried befassen sich die Forscher mit der Schmeißfliege, einer Spezialistin für Bewegungssehen. Ihr gesamtes visuelles System im Gehirn besteht aus nur wenigen hundert Tausend Nervenzellen und bleibt damit einigermaßen überschaubar, im Gegensatz zu den vielen Milliarden Nervenzellen des menschlichen Sehzentrums [1].

Bereits im vergangenen Jahr konnte Alexander Borst und sein Martinsrieder Kollege Jürgen Haag zusammen mit Winfried Denk vom Max-Planck-Institut für medizinische Forschung in Heidelberg nachweisen, dass das Bewegungssehen der Fliege sehr gut mit dem Schaltplan des so genannten "Reichardt-Detektors" beschrieben werden kann (s. Abb. 1 B und PNAS, 16. November 2004). Dieser Detektor wurde schon vor Jahrzehnten im Modell postuliert. Die Bewegungsrichtung eines Objektes kann von der Fliege wahrgenommen werden, indem die Informationen von jeweils zwei benachbarten Facetten des Fliegenauges miteinander verrechnet werden: Ein sich von links nach rechts bewegendes Objekt ruft zunächst bei der einen Facette und anschließend bei der benachbarten Facette ein Signal hervor. Diese Signale werden unterschiedlich gefiltert und anschließend miteinander verrechnet, sodass das Ergebnis direkt korreliert mit der Geschwindigkeit der Bewegung, die von der Fliege wahrgenommen wird.

Zusätzlich zum Mechanismus der Bewegungsdetektion konnten Borst und seine Kollegen auf der Basis ihrer jüngsten Untersuchungen erklären, wie die Adaptation auf unterschiedliche Geschwindigkeitsbereiche funktioniert. Die Wissenschaftler registrierten dazu die Reaktion der für Bewegungsreize empfindlichen H1-Zelle. Diese Zelle verbindet zwei Teile im Sehsystem der Fliege, nämlich die so genannten Lobula-Platten in der linken und rechten Hälfte des Fliegenhirns (Abb. 1A). Der Fliege wurde im Experiment ein Streifenmuster gezeigt, das sich mit einer bestimmten Geschwindigkeits-Verteilung bewegte.

Je größer die Schwankungen um die mittlere Geschwindigkeit des Streifenmusters waren (d.h. je breiter die Geschwindigkeits-Verteilung), desto unempfindlicher reagierte die Zelle auf die jeweiligen aktuell gezeigten Geschwindigkeiten. Diese Anpassung an die veränderte Statistik der Geschwindigkeits-Reize erfolgte aber im Sehsystem der Fliege so schnell, dass die Wissenschaftler sie nicht durch die früher gängigen Modelle der Adaptation erklären konnten. "Wir mussten unsere bisherigen Vorstellungen von Adaptation aufgeben", berichtet Alexander Borst. "Nachdem wir die Experimente in einem Computer-Modell des Fliegen-Sehsystems bestehend aus Reichardt-Detektoren simuliert hatten, konnten wir feststellen, dass die Adaptation beim Bewegungssehen der Fliege ohne irgendeine Veränderung der so genannten intrinsischen Faktoren, wie z. B. der Zeitkonstanten, auskommt, also gewissermaßen automatisch funktioniert."

Das Ergebnis der Modell-Simulationen von Alexander Borst, Virginia Flanagin und Haim Sompolinsky bedeutet, dass das bisherige Verständnis von Adaptation neu überdacht werden muss. "Es ist durchaus möglich, dass wir mit unserem Ergebnis auch für die Adaptation in anderen Sinnessystemen völlig neue Erklärungen liefern könnten", so Borst. Der Max-Planck-Direktor ist fest davon überzeugt, dass Computer-Modelle für die Sinnesphysiologie unerlässlich sind, um die hochfeinen Regulationen und Abläufe zu verstehen, die sich die Natur ausgedacht hat.

Verwandte Links:

[1] Pressemitteilung vom 19.5.2004: "Fliegen erweitern ihren Horizont"
www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2004/pressemitteilung20040519/index.html

Eva-Maria Diehl | idw
Weitere Informationen:
http://www.neuro.mpg.de
http://www.mpg.de

Weitere Berichte zu: Adaptation Bewegungssehen Fliege Nervenzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demenz: Neue Substanz verbessert Gehirnfunktion
28.07.2017 | Technische Universität München

nachricht Mit einem Flow-Reaktor umweltschonend Wirkstoffe erzeugen
28.07.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise