Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Perfektes Bewegungssehen bei rasanten Fliegen

13.04.2005


Anhand von Computersimulationen entdecken Max-Planck-Forscher die rasche Anpassung von Nervenzellen im Fliegenhirn


Darstellung der Experimente und Modellierungen zum Bewegungssehen der Schmeißfliege. A: Das Sehsystem der Schmeißfliege schematisch dargestellt. Rechts in der Skizze ist die Nervenzelle (H1) markiert, an der die Messungen vorgenommen wurden. B: Schematische Darstellung des Reichardt-Detektors. Dargestellt sind zwei benachbarte Lichtrezeptoren (oben), denen jeweils ein Bewegungsdetektor nachgeschaltet ist, der aus zwei Filtern (LP = Tiefpass und HP = Hochpass) besteht. Ein Multiplikator (M) verrechnet die unterschiedlichen Helligkeitssignale zu jedem Zeitpunkt. C: Gemessene Adaptation der Nervenzelle auf Schwankungen in der Bewegungsgeschwindigkeit. Die Geschwindigkeitsangabe in Hz bedeutet die Anzahl Streifen, die an einem Punkt im Sehfeld der Fliege pro Sekunde vorbeilaufen. Je größer die Änderungen der Geschwindigkeit, desto unempfindlicher ist die Reaktion der Zelle, erkennbar an der abnehmenden Steilheit der Kurve von 1 bis 10 Hz. D: Die Computersimulation lieferte Resultate, die mit den an der Zelle gemessenen Reaktionen gut übereinstimmen. Bild: Max-Planck-Institut für Neurobiologie, Martinsried



Wissenschaftler am Max-Planck-Institut für Neurobiologie in Martinsried bei München haben sich darauf spezialisiert, die Verschaltungen von Nervenzellen in Computer-Modellen zu simulieren und am einfachen Sehzentrum der Schmeißfliege "in natura" zu überprüfen. Gemeinsam mit Haim Sompolinsky von der Hebräischen Universität in Jerusalem haben Alexander Borst und Virginia Flanagin nun erstmals entdeckt, dass die extrem schnelle Anpassung (Adaptation) der Nervenzellen des Sehzentrums ein wichtiger Mechanismus des Bewegungssehens ist. Und dies war nur auf der Basis von Computer-Modellierungen möglich. Die Ergebnisse in der aktuellen Ausgabe von PNAS (12. April 2005) revidieren bisherige Theorien über die Adaptation des Bewegungssehens und könnten für andere sensorische Systeme neue Erkenntnisse liefern.



Wir alle kennen das Phänomen: Wenn wir aus einem dunklen Zimmer hinaus ins helle Sonnenlicht treten, sind wir geblendet. Wir kneifen die Augen zusammen und schatten sie mit der Hand ab. Bis zu einer Minute und länger dauert es bis wir wieder richtig sehen. Dasselbe auf dem umgekehrten Weg: Wenn wir einen dunklen Raum betreten, müssen wir erst stehen bleiben und warten, bevor die Konturen der Gegenstände wie aus dem Nichts hervorzutreten beginnen. So wie sich unsere Augen auf verschiedene Lichtbedingungen einstellen, so kann sich das Bewegungs-Sehsystem, welches darauf spezialisiert ist, die Bewegung vor unseren Augen nach ihrer Richtung zu unterscheiden, an verschiedene Bedingungen anpassen. Im Gegensatz zur Anpassung an die Helligkeit geschieht das aber sehr viel schneller. Bei Fliegen innerhalb einer Sekunde.

Biologen bezeichnen die oben beschriebenen Vorgänge der Anpassung an verschiedene Umweltbedingungen allgemein als Adaptation. Durch Adaptation wird sichergestellt, dass unsere Sinnessysteme auch unter wechselnden Bedingungen voll funktionstüchtig bleiben und stets mit maximaler Empfindlichkeit ein Maximum an Information an nachgeschaltete Nervenzentren weiterleiten. Bislang waren die Wissenschaftler der Auffassung, dass der Änderung der Empfindlichkeit stets eine Anpassung der Verarbeitungsparameter in den beteiligten Nervensystemen zugrunde liegt, z.B. eine Veränderung der Zeitkonstante. Borst und Kollegen konnten jedoch zeigen, dass die Adaptation beim Bewegungssehen von Fliegen nicht notwendigerweise eine solche Neueinstellung der Systemparameter erfordert: das Auswerte-System leistet dies automatisch, und erfolgt deshalb so rasch.

Bewegungssehen beruht auf der komplexen Verrechnung von Bildern, die über die Netzhaut wandern und die Rezeptoren reizen. Dabei müssen die bewegten Bilder, die durch unsere Eigenbewegung auf der Netzhaut hervorgerufen werden, und die bewegten Bilder, die durch die Bewegung von Objekten vor einem statischen Hintergrund entstehen, unterschieden werden. Die Bewegungsinformationen werden in den Sehzentren des Gehirns, die den Lichtrezeptoren in der Netzhaut übergeordnet sind, verrechnet. Diese Verrechnungen lassen sich in Form von Schaltplänen darstellen und im Computermodell simulieren. Am Max-Planck-Institut für Neurobiologie in Martinsried befassen sich die Forscher mit der Schmeißfliege, einer Spezialistin für Bewegungssehen. Ihr gesamtes visuelles System im Gehirn besteht aus nur wenigen hundert Tausend Nervenzellen und bleibt damit einigermaßen überschaubar, im Gegensatz zu den vielen Milliarden Nervenzellen des menschlichen Sehzentrums [1].

Bereits im vergangenen Jahr konnte Alexander Borst und sein Martinsrieder Kollege Jürgen Haag zusammen mit Winfried Denk vom Max-Planck-Institut für medizinische Forschung in Heidelberg nachweisen, dass das Bewegungssehen der Fliege sehr gut mit dem Schaltplan des so genannten "Reichardt-Detektors" beschrieben werden kann (s. Abb. 1 B und PNAS, 16. November 2004). Dieser Detektor wurde schon vor Jahrzehnten im Modell postuliert. Die Bewegungsrichtung eines Objektes kann von der Fliege wahrgenommen werden, indem die Informationen von jeweils zwei benachbarten Facetten des Fliegenauges miteinander verrechnet werden: Ein sich von links nach rechts bewegendes Objekt ruft zunächst bei der einen Facette und anschließend bei der benachbarten Facette ein Signal hervor. Diese Signale werden unterschiedlich gefiltert und anschließend miteinander verrechnet, sodass das Ergebnis direkt korreliert mit der Geschwindigkeit der Bewegung, die von der Fliege wahrgenommen wird.

Zusätzlich zum Mechanismus der Bewegungsdetektion konnten Borst und seine Kollegen auf der Basis ihrer jüngsten Untersuchungen erklären, wie die Adaptation auf unterschiedliche Geschwindigkeitsbereiche funktioniert. Die Wissenschaftler registrierten dazu die Reaktion der für Bewegungsreize empfindlichen H1-Zelle. Diese Zelle verbindet zwei Teile im Sehsystem der Fliege, nämlich die so genannten Lobula-Platten in der linken und rechten Hälfte des Fliegenhirns (Abb. 1A). Der Fliege wurde im Experiment ein Streifenmuster gezeigt, das sich mit einer bestimmten Geschwindigkeits-Verteilung bewegte.

Je größer die Schwankungen um die mittlere Geschwindigkeit des Streifenmusters waren (d.h. je breiter die Geschwindigkeits-Verteilung), desto unempfindlicher reagierte die Zelle auf die jeweiligen aktuell gezeigten Geschwindigkeiten. Diese Anpassung an die veränderte Statistik der Geschwindigkeits-Reize erfolgte aber im Sehsystem der Fliege so schnell, dass die Wissenschaftler sie nicht durch die früher gängigen Modelle der Adaptation erklären konnten. "Wir mussten unsere bisherigen Vorstellungen von Adaptation aufgeben", berichtet Alexander Borst. "Nachdem wir die Experimente in einem Computer-Modell des Fliegen-Sehsystems bestehend aus Reichardt-Detektoren simuliert hatten, konnten wir feststellen, dass die Adaptation beim Bewegungssehen der Fliege ohne irgendeine Veränderung der so genannten intrinsischen Faktoren, wie z. B. der Zeitkonstanten, auskommt, also gewissermaßen automatisch funktioniert."

Das Ergebnis der Modell-Simulationen von Alexander Borst, Virginia Flanagin und Haim Sompolinsky bedeutet, dass das bisherige Verständnis von Adaptation neu überdacht werden muss. "Es ist durchaus möglich, dass wir mit unserem Ergebnis auch für die Adaptation in anderen Sinnessystemen völlig neue Erklärungen liefern könnten", so Borst. Der Max-Planck-Direktor ist fest davon überzeugt, dass Computer-Modelle für die Sinnesphysiologie unerlässlich sind, um die hochfeinen Regulationen und Abläufe zu verstehen, die sich die Natur ausgedacht hat.

Verwandte Links:

[1] Pressemitteilung vom 19.5.2004: "Fliegen erweitern ihren Horizont"
www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2004/pressemitteilung20040519/index.html

Eva-Maria Diehl | idw
Weitere Informationen:
http://www.neuro.mpg.de
http://www.mpg.de

Weitere Berichte zu: Adaptation Bewegungssehen Fliege Nervenzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie