Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Perfektes Bewegungssehen bei rasanten Fliegen

13.04.2005


Anhand von Computersimulationen entdecken Max-Planck-Forscher die rasche Anpassung von Nervenzellen im Fliegenhirn


Darstellung der Experimente und Modellierungen zum Bewegungssehen der Schmeißfliege. A: Das Sehsystem der Schmeißfliege schematisch dargestellt. Rechts in der Skizze ist die Nervenzelle (H1) markiert, an der die Messungen vorgenommen wurden. B: Schematische Darstellung des Reichardt-Detektors. Dargestellt sind zwei benachbarte Lichtrezeptoren (oben), denen jeweils ein Bewegungsdetektor nachgeschaltet ist, der aus zwei Filtern (LP = Tiefpass und HP = Hochpass) besteht. Ein Multiplikator (M) verrechnet die unterschiedlichen Helligkeitssignale zu jedem Zeitpunkt. C: Gemessene Adaptation der Nervenzelle auf Schwankungen in der Bewegungsgeschwindigkeit. Die Geschwindigkeitsangabe in Hz bedeutet die Anzahl Streifen, die an einem Punkt im Sehfeld der Fliege pro Sekunde vorbeilaufen. Je größer die Änderungen der Geschwindigkeit, desto unempfindlicher ist die Reaktion der Zelle, erkennbar an der abnehmenden Steilheit der Kurve von 1 bis 10 Hz. D: Die Computersimulation lieferte Resultate, die mit den an der Zelle gemessenen Reaktionen gut übereinstimmen. Bild: Max-Planck-Institut für Neurobiologie, Martinsried



Wissenschaftler am Max-Planck-Institut für Neurobiologie in Martinsried bei München haben sich darauf spezialisiert, die Verschaltungen von Nervenzellen in Computer-Modellen zu simulieren und am einfachen Sehzentrum der Schmeißfliege "in natura" zu überprüfen. Gemeinsam mit Haim Sompolinsky von der Hebräischen Universität in Jerusalem haben Alexander Borst und Virginia Flanagin nun erstmals entdeckt, dass die extrem schnelle Anpassung (Adaptation) der Nervenzellen des Sehzentrums ein wichtiger Mechanismus des Bewegungssehens ist. Und dies war nur auf der Basis von Computer-Modellierungen möglich. Die Ergebnisse in der aktuellen Ausgabe von PNAS (12. April 2005) revidieren bisherige Theorien über die Adaptation des Bewegungssehens und könnten für andere sensorische Systeme neue Erkenntnisse liefern.



Wir alle kennen das Phänomen: Wenn wir aus einem dunklen Zimmer hinaus ins helle Sonnenlicht treten, sind wir geblendet. Wir kneifen die Augen zusammen und schatten sie mit der Hand ab. Bis zu einer Minute und länger dauert es bis wir wieder richtig sehen. Dasselbe auf dem umgekehrten Weg: Wenn wir einen dunklen Raum betreten, müssen wir erst stehen bleiben und warten, bevor die Konturen der Gegenstände wie aus dem Nichts hervorzutreten beginnen. So wie sich unsere Augen auf verschiedene Lichtbedingungen einstellen, so kann sich das Bewegungs-Sehsystem, welches darauf spezialisiert ist, die Bewegung vor unseren Augen nach ihrer Richtung zu unterscheiden, an verschiedene Bedingungen anpassen. Im Gegensatz zur Anpassung an die Helligkeit geschieht das aber sehr viel schneller. Bei Fliegen innerhalb einer Sekunde.

Biologen bezeichnen die oben beschriebenen Vorgänge der Anpassung an verschiedene Umweltbedingungen allgemein als Adaptation. Durch Adaptation wird sichergestellt, dass unsere Sinnessysteme auch unter wechselnden Bedingungen voll funktionstüchtig bleiben und stets mit maximaler Empfindlichkeit ein Maximum an Information an nachgeschaltete Nervenzentren weiterleiten. Bislang waren die Wissenschaftler der Auffassung, dass der Änderung der Empfindlichkeit stets eine Anpassung der Verarbeitungsparameter in den beteiligten Nervensystemen zugrunde liegt, z.B. eine Veränderung der Zeitkonstante. Borst und Kollegen konnten jedoch zeigen, dass die Adaptation beim Bewegungssehen von Fliegen nicht notwendigerweise eine solche Neueinstellung der Systemparameter erfordert: das Auswerte-System leistet dies automatisch, und erfolgt deshalb so rasch.

Bewegungssehen beruht auf der komplexen Verrechnung von Bildern, die über die Netzhaut wandern und die Rezeptoren reizen. Dabei müssen die bewegten Bilder, die durch unsere Eigenbewegung auf der Netzhaut hervorgerufen werden, und die bewegten Bilder, die durch die Bewegung von Objekten vor einem statischen Hintergrund entstehen, unterschieden werden. Die Bewegungsinformationen werden in den Sehzentren des Gehirns, die den Lichtrezeptoren in der Netzhaut übergeordnet sind, verrechnet. Diese Verrechnungen lassen sich in Form von Schaltplänen darstellen und im Computermodell simulieren. Am Max-Planck-Institut für Neurobiologie in Martinsried befassen sich die Forscher mit der Schmeißfliege, einer Spezialistin für Bewegungssehen. Ihr gesamtes visuelles System im Gehirn besteht aus nur wenigen hundert Tausend Nervenzellen und bleibt damit einigermaßen überschaubar, im Gegensatz zu den vielen Milliarden Nervenzellen des menschlichen Sehzentrums [1].

Bereits im vergangenen Jahr konnte Alexander Borst und sein Martinsrieder Kollege Jürgen Haag zusammen mit Winfried Denk vom Max-Planck-Institut für medizinische Forschung in Heidelberg nachweisen, dass das Bewegungssehen der Fliege sehr gut mit dem Schaltplan des so genannten "Reichardt-Detektors" beschrieben werden kann (s. Abb. 1 B und PNAS, 16. November 2004). Dieser Detektor wurde schon vor Jahrzehnten im Modell postuliert. Die Bewegungsrichtung eines Objektes kann von der Fliege wahrgenommen werden, indem die Informationen von jeweils zwei benachbarten Facetten des Fliegenauges miteinander verrechnet werden: Ein sich von links nach rechts bewegendes Objekt ruft zunächst bei der einen Facette und anschließend bei der benachbarten Facette ein Signal hervor. Diese Signale werden unterschiedlich gefiltert und anschließend miteinander verrechnet, sodass das Ergebnis direkt korreliert mit der Geschwindigkeit der Bewegung, die von der Fliege wahrgenommen wird.

Zusätzlich zum Mechanismus der Bewegungsdetektion konnten Borst und seine Kollegen auf der Basis ihrer jüngsten Untersuchungen erklären, wie die Adaptation auf unterschiedliche Geschwindigkeitsbereiche funktioniert. Die Wissenschaftler registrierten dazu die Reaktion der für Bewegungsreize empfindlichen H1-Zelle. Diese Zelle verbindet zwei Teile im Sehsystem der Fliege, nämlich die so genannten Lobula-Platten in der linken und rechten Hälfte des Fliegenhirns (Abb. 1A). Der Fliege wurde im Experiment ein Streifenmuster gezeigt, das sich mit einer bestimmten Geschwindigkeits-Verteilung bewegte.

Je größer die Schwankungen um die mittlere Geschwindigkeit des Streifenmusters waren (d.h. je breiter die Geschwindigkeits-Verteilung), desto unempfindlicher reagierte die Zelle auf die jeweiligen aktuell gezeigten Geschwindigkeiten. Diese Anpassung an die veränderte Statistik der Geschwindigkeits-Reize erfolgte aber im Sehsystem der Fliege so schnell, dass die Wissenschaftler sie nicht durch die früher gängigen Modelle der Adaptation erklären konnten. "Wir mussten unsere bisherigen Vorstellungen von Adaptation aufgeben", berichtet Alexander Borst. "Nachdem wir die Experimente in einem Computer-Modell des Fliegen-Sehsystems bestehend aus Reichardt-Detektoren simuliert hatten, konnten wir feststellen, dass die Adaptation beim Bewegungssehen der Fliege ohne irgendeine Veränderung der so genannten intrinsischen Faktoren, wie z. B. der Zeitkonstanten, auskommt, also gewissermaßen automatisch funktioniert."

Das Ergebnis der Modell-Simulationen von Alexander Borst, Virginia Flanagin und Haim Sompolinsky bedeutet, dass das bisherige Verständnis von Adaptation neu überdacht werden muss. "Es ist durchaus möglich, dass wir mit unserem Ergebnis auch für die Adaptation in anderen Sinnessystemen völlig neue Erklärungen liefern könnten", so Borst. Der Max-Planck-Direktor ist fest davon überzeugt, dass Computer-Modelle für die Sinnesphysiologie unerlässlich sind, um die hochfeinen Regulationen und Abläufe zu verstehen, die sich die Natur ausgedacht hat.

Verwandte Links:

[1] Pressemitteilung vom 19.5.2004: "Fliegen erweitern ihren Horizont"
www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2004/pressemitteilung20040519/index.html

Eva-Maria Diehl | idw
Weitere Informationen:
http://www.neuro.mpg.de
http://www.mpg.de

Weitere Berichte zu: Adaptation Bewegungssehen Fliege Nervenzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten