Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Perfektes Bewegungssehen bei rasanten Fliegen

13.04.2005


Anhand von Computersimulationen entdecken Max-Planck-Forscher die rasche Anpassung von Nervenzellen im Fliegenhirn


Darstellung der Experimente und Modellierungen zum Bewegungssehen der Schmeißfliege. A: Das Sehsystem der Schmeißfliege schematisch dargestellt. Rechts in der Skizze ist die Nervenzelle (H1) markiert, an der die Messungen vorgenommen wurden. B: Schematische Darstellung des Reichardt-Detektors. Dargestellt sind zwei benachbarte Lichtrezeptoren (oben), denen jeweils ein Bewegungsdetektor nachgeschaltet ist, der aus zwei Filtern (LP = Tiefpass und HP = Hochpass) besteht. Ein Multiplikator (M) verrechnet die unterschiedlichen Helligkeitssignale zu jedem Zeitpunkt. C: Gemessene Adaptation der Nervenzelle auf Schwankungen in der Bewegungsgeschwindigkeit. Die Geschwindigkeitsangabe in Hz bedeutet die Anzahl Streifen, die an einem Punkt im Sehfeld der Fliege pro Sekunde vorbeilaufen. Je größer die Änderungen der Geschwindigkeit, desto unempfindlicher ist die Reaktion der Zelle, erkennbar an der abnehmenden Steilheit der Kurve von 1 bis 10 Hz. D: Die Computersimulation lieferte Resultate, die mit den an der Zelle gemessenen Reaktionen gut übereinstimmen. Bild: Max-Planck-Institut für Neurobiologie, Martinsried



Wissenschaftler am Max-Planck-Institut für Neurobiologie in Martinsried bei München haben sich darauf spezialisiert, die Verschaltungen von Nervenzellen in Computer-Modellen zu simulieren und am einfachen Sehzentrum der Schmeißfliege "in natura" zu überprüfen. Gemeinsam mit Haim Sompolinsky von der Hebräischen Universität in Jerusalem haben Alexander Borst und Virginia Flanagin nun erstmals entdeckt, dass die extrem schnelle Anpassung (Adaptation) der Nervenzellen des Sehzentrums ein wichtiger Mechanismus des Bewegungssehens ist. Und dies war nur auf der Basis von Computer-Modellierungen möglich. Die Ergebnisse in der aktuellen Ausgabe von PNAS (12. April 2005) revidieren bisherige Theorien über die Adaptation des Bewegungssehens und könnten für andere sensorische Systeme neue Erkenntnisse liefern.



Wir alle kennen das Phänomen: Wenn wir aus einem dunklen Zimmer hinaus ins helle Sonnenlicht treten, sind wir geblendet. Wir kneifen die Augen zusammen und schatten sie mit der Hand ab. Bis zu einer Minute und länger dauert es bis wir wieder richtig sehen. Dasselbe auf dem umgekehrten Weg: Wenn wir einen dunklen Raum betreten, müssen wir erst stehen bleiben und warten, bevor die Konturen der Gegenstände wie aus dem Nichts hervorzutreten beginnen. So wie sich unsere Augen auf verschiedene Lichtbedingungen einstellen, so kann sich das Bewegungs-Sehsystem, welches darauf spezialisiert ist, die Bewegung vor unseren Augen nach ihrer Richtung zu unterscheiden, an verschiedene Bedingungen anpassen. Im Gegensatz zur Anpassung an die Helligkeit geschieht das aber sehr viel schneller. Bei Fliegen innerhalb einer Sekunde.

Biologen bezeichnen die oben beschriebenen Vorgänge der Anpassung an verschiedene Umweltbedingungen allgemein als Adaptation. Durch Adaptation wird sichergestellt, dass unsere Sinnessysteme auch unter wechselnden Bedingungen voll funktionstüchtig bleiben und stets mit maximaler Empfindlichkeit ein Maximum an Information an nachgeschaltete Nervenzentren weiterleiten. Bislang waren die Wissenschaftler der Auffassung, dass der Änderung der Empfindlichkeit stets eine Anpassung der Verarbeitungsparameter in den beteiligten Nervensystemen zugrunde liegt, z.B. eine Veränderung der Zeitkonstante. Borst und Kollegen konnten jedoch zeigen, dass die Adaptation beim Bewegungssehen von Fliegen nicht notwendigerweise eine solche Neueinstellung der Systemparameter erfordert: das Auswerte-System leistet dies automatisch, und erfolgt deshalb so rasch.

Bewegungssehen beruht auf der komplexen Verrechnung von Bildern, die über die Netzhaut wandern und die Rezeptoren reizen. Dabei müssen die bewegten Bilder, die durch unsere Eigenbewegung auf der Netzhaut hervorgerufen werden, und die bewegten Bilder, die durch die Bewegung von Objekten vor einem statischen Hintergrund entstehen, unterschieden werden. Die Bewegungsinformationen werden in den Sehzentren des Gehirns, die den Lichtrezeptoren in der Netzhaut übergeordnet sind, verrechnet. Diese Verrechnungen lassen sich in Form von Schaltplänen darstellen und im Computermodell simulieren. Am Max-Planck-Institut für Neurobiologie in Martinsried befassen sich die Forscher mit der Schmeißfliege, einer Spezialistin für Bewegungssehen. Ihr gesamtes visuelles System im Gehirn besteht aus nur wenigen hundert Tausend Nervenzellen und bleibt damit einigermaßen überschaubar, im Gegensatz zu den vielen Milliarden Nervenzellen des menschlichen Sehzentrums [1].

Bereits im vergangenen Jahr konnte Alexander Borst und sein Martinsrieder Kollege Jürgen Haag zusammen mit Winfried Denk vom Max-Planck-Institut für medizinische Forschung in Heidelberg nachweisen, dass das Bewegungssehen der Fliege sehr gut mit dem Schaltplan des so genannten "Reichardt-Detektors" beschrieben werden kann (s. Abb. 1 B und PNAS, 16. November 2004). Dieser Detektor wurde schon vor Jahrzehnten im Modell postuliert. Die Bewegungsrichtung eines Objektes kann von der Fliege wahrgenommen werden, indem die Informationen von jeweils zwei benachbarten Facetten des Fliegenauges miteinander verrechnet werden: Ein sich von links nach rechts bewegendes Objekt ruft zunächst bei der einen Facette und anschließend bei der benachbarten Facette ein Signal hervor. Diese Signale werden unterschiedlich gefiltert und anschließend miteinander verrechnet, sodass das Ergebnis direkt korreliert mit der Geschwindigkeit der Bewegung, die von der Fliege wahrgenommen wird.

Zusätzlich zum Mechanismus der Bewegungsdetektion konnten Borst und seine Kollegen auf der Basis ihrer jüngsten Untersuchungen erklären, wie die Adaptation auf unterschiedliche Geschwindigkeitsbereiche funktioniert. Die Wissenschaftler registrierten dazu die Reaktion der für Bewegungsreize empfindlichen H1-Zelle. Diese Zelle verbindet zwei Teile im Sehsystem der Fliege, nämlich die so genannten Lobula-Platten in der linken und rechten Hälfte des Fliegenhirns (Abb. 1A). Der Fliege wurde im Experiment ein Streifenmuster gezeigt, das sich mit einer bestimmten Geschwindigkeits-Verteilung bewegte.

Je größer die Schwankungen um die mittlere Geschwindigkeit des Streifenmusters waren (d.h. je breiter die Geschwindigkeits-Verteilung), desto unempfindlicher reagierte die Zelle auf die jeweiligen aktuell gezeigten Geschwindigkeiten. Diese Anpassung an die veränderte Statistik der Geschwindigkeits-Reize erfolgte aber im Sehsystem der Fliege so schnell, dass die Wissenschaftler sie nicht durch die früher gängigen Modelle der Adaptation erklären konnten. "Wir mussten unsere bisherigen Vorstellungen von Adaptation aufgeben", berichtet Alexander Borst. "Nachdem wir die Experimente in einem Computer-Modell des Fliegen-Sehsystems bestehend aus Reichardt-Detektoren simuliert hatten, konnten wir feststellen, dass die Adaptation beim Bewegungssehen der Fliege ohne irgendeine Veränderung der so genannten intrinsischen Faktoren, wie z. B. der Zeitkonstanten, auskommt, also gewissermaßen automatisch funktioniert."

Das Ergebnis der Modell-Simulationen von Alexander Borst, Virginia Flanagin und Haim Sompolinsky bedeutet, dass das bisherige Verständnis von Adaptation neu überdacht werden muss. "Es ist durchaus möglich, dass wir mit unserem Ergebnis auch für die Adaptation in anderen Sinnessystemen völlig neue Erklärungen liefern könnten", so Borst. Der Max-Planck-Direktor ist fest davon überzeugt, dass Computer-Modelle für die Sinnesphysiologie unerlässlich sind, um die hochfeinen Regulationen und Abläufe zu verstehen, die sich die Natur ausgedacht hat.

Verwandte Links:

[1] Pressemitteilung vom 19.5.2004: "Fliegen erweitern ihren Horizont"
www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2004/pressemitteilung20040519/index.html

Eva-Maria Diehl | idw
Weitere Informationen:
http://www.neuro.mpg.de
http://www.mpg.de

Weitere Berichte zu: Adaptation Bewegungssehen Fliege Nervenzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

nachricht Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?
16.01.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie

Erste "Rote Liste" gefährdeter Lebensräume in Europa

16.01.2017 | Ökologie Umwelt- Naturschutz