Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Perfektes Bewegungssehen bei rasanten Fliegen

13.04.2005


Anhand von Computersimulationen entdecken Max-Planck-Forscher die rasche Anpassung von Nervenzellen im Fliegenhirn


Darstellung der Experimente und Modellierungen zum Bewegungssehen der Schmeißfliege. A: Das Sehsystem der Schmeißfliege schematisch dargestellt. Rechts in der Skizze ist die Nervenzelle (H1) markiert, an der die Messungen vorgenommen wurden. B: Schematische Darstellung des Reichardt-Detektors. Dargestellt sind zwei benachbarte Lichtrezeptoren (oben), denen jeweils ein Bewegungsdetektor nachgeschaltet ist, der aus zwei Filtern (LP = Tiefpass und HP = Hochpass) besteht. Ein Multiplikator (M) verrechnet die unterschiedlichen Helligkeitssignale zu jedem Zeitpunkt. C: Gemessene Adaptation der Nervenzelle auf Schwankungen in der Bewegungsgeschwindigkeit. Die Geschwindigkeitsangabe in Hz bedeutet die Anzahl Streifen, die an einem Punkt im Sehfeld der Fliege pro Sekunde vorbeilaufen. Je größer die Änderungen der Geschwindigkeit, desto unempfindlicher ist die Reaktion der Zelle, erkennbar an der abnehmenden Steilheit der Kurve von 1 bis 10 Hz. D: Die Computersimulation lieferte Resultate, die mit den an der Zelle gemessenen Reaktionen gut übereinstimmen. Bild: Max-Planck-Institut für Neurobiologie, Martinsried



Wissenschaftler am Max-Planck-Institut für Neurobiologie in Martinsried bei München haben sich darauf spezialisiert, die Verschaltungen von Nervenzellen in Computer-Modellen zu simulieren und am einfachen Sehzentrum der Schmeißfliege "in natura" zu überprüfen. Gemeinsam mit Haim Sompolinsky von der Hebräischen Universität in Jerusalem haben Alexander Borst und Virginia Flanagin nun erstmals entdeckt, dass die extrem schnelle Anpassung (Adaptation) der Nervenzellen des Sehzentrums ein wichtiger Mechanismus des Bewegungssehens ist. Und dies war nur auf der Basis von Computer-Modellierungen möglich. Die Ergebnisse in der aktuellen Ausgabe von PNAS (12. April 2005) revidieren bisherige Theorien über die Adaptation des Bewegungssehens und könnten für andere sensorische Systeme neue Erkenntnisse liefern.



Wir alle kennen das Phänomen: Wenn wir aus einem dunklen Zimmer hinaus ins helle Sonnenlicht treten, sind wir geblendet. Wir kneifen die Augen zusammen und schatten sie mit der Hand ab. Bis zu einer Minute und länger dauert es bis wir wieder richtig sehen. Dasselbe auf dem umgekehrten Weg: Wenn wir einen dunklen Raum betreten, müssen wir erst stehen bleiben und warten, bevor die Konturen der Gegenstände wie aus dem Nichts hervorzutreten beginnen. So wie sich unsere Augen auf verschiedene Lichtbedingungen einstellen, so kann sich das Bewegungs-Sehsystem, welches darauf spezialisiert ist, die Bewegung vor unseren Augen nach ihrer Richtung zu unterscheiden, an verschiedene Bedingungen anpassen. Im Gegensatz zur Anpassung an die Helligkeit geschieht das aber sehr viel schneller. Bei Fliegen innerhalb einer Sekunde.

Biologen bezeichnen die oben beschriebenen Vorgänge der Anpassung an verschiedene Umweltbedingungen allgemein als Adaptation. Durch Adaptation wird sichergestellt, dass unsere Sinnessysteme auch unter wechselnden Bedingungen voll funktionstüchtig bleiben und stets mit maximaler Empfindlichkeit ein Maximum an Information an nachgeschaltete Nervenzentren weiterleiten. Bislang waren die Wissenschaftler der Auffassung, dass der Änderung der Empfindlichkeit stets eine Anpassung der Verarbeitungsparameter in den beteiligten Nervensystemen zugrunde liegt, z.B. eine Veränderung der Zeitkonstante. Borst und Kollegen konnten jedoch zeigen, dass die Adaptation beim Bewegungssehen von Fliegen nicht notwendigerweise eine solche Neueinstellung der Systemparameter erfordert: das Auswerte-System leistet dies automatisch, und erfolgt deshalb so rasch.

Bewegungssehen beruht auf der komplexen Verrechnung von Bildern, die über die Netzhaut wandern und die Rezeptoren reizen. Dabei müssen die bewegten Bilder, die durch unsere Eigenbewegung auf der Netzhaut hervorgerufen werden, und die bewegten Bilder, die durch die Bewegung von Objekten vor einem statischen Hintergrund entstehen, unterschieden werden. Die Bewegungsinformationen werden in den Sehzentren des Gehirns, die den Lichtrezeptoren in der Netzhaut übergeordnet sind, verrechnet. Diese Verrechnungen lassen sich in Form von Schaltplänen darstellen und im Computermodell simulieren. Am Max-Planck-Institut für Neurobiologie in Martinsried befassen sich die Forscher mit der Schmeißfliege, einer Spezialistin für Bewegungssehen. Ihr gesamtes visuelles System im Gehirn besteht aus nur wenigen hundert Tausend Nervenzellen und bleibt damit einigermaßen überschaubar, im Gegensatz zu den vielen Milliarden Nervenzellen des menschlichen Sehzentrums [1].

Bereits im vergangenen Jahr konnte Alexander Borst und sein Martinsrieder Kollege Jürgen Haag zusammen mit Winfried Denk vom Max-Planck-Institut für medizinische Forschung in Heidelberg nachweisen, dass das Bewegungssehen der Fliege sehr gut mit dem Schaltplan des so genannten "Reichardt-Detektors" beschrieben werden kann (s. Abb. 1 B und PNAS, 16. November 2004). Dieser Detektor wurde schon vor Jahrzehnten im Modell postuliert. Die Bewegungsrichtung eines Objektes kann von der Fliege wahrgenommen werden, indem die Informationen von jeweils zwei benachbarten Facetten des Fliegenauges miteinander verrechnet werden: Ein sich von links nach rechts bewegendes Objekt ruft zunächst bei der einen Facette und anschließend bei der benachbarten Facette ein Signal hervor. Diese Signale werden unterschiedlich gefiltert und anschließend miteinander verrechnet, sodass das Ergebnis direkt korreliert mit der Geschwindigkeit der Bewegung, die von der Fliege wahrgenommen wird.

Zusätzlich zum Mechanismus der Bewegungsdetektion konnten Borst und seine Kollegen auf der Basis ihrer jüngsten Untersuchungen erklären, wie die Adaptation auf unterschiedliche Geschwindigkeitsbereiche funktioniert. Die Wissenschaftler registrierten dazu die Reaktion der für Bewegungsreize empfindlichen H1-Zelle. Diese Zelle verbindet zwei Teile im Sehsystem der Fliege, nämlich die so genannten Lobula-Platten in der linken und rechten Hälfte des Fliegenhirns (Abb. 1A). Der Fliege wurde im Experiment ein Streifenmuster gezeigt, das sich mit einer bestimmten Geschwindigkeits-Verteilung bewegte.

Je größer die Schwankungen um die mittlere Geschwindigkeit des Streifenmusters waren (d.h. je breiter die Geschwindigkeits-Verteilung), desto unempfindlicher reagierte die Zelle auf die jeweiligen aktuell gezeigten Geschwindigkeiten. Diese Anpassung an die veränderte Statistik der Geschwindigkeits-Reize erfolgte aber im Sehsystem der Fliege so schnell, dass die Wissenschaftler sie nicht durch die früher gängigen Modelle der Adaptation erklären konnten. "Wir mussten unsere bisherigen Vorstellungen von Adaptation aufgeben", berichtet Alexander Borst. "Nachdem wir die Experimente in einem Computer-Modell des Fliegen-Sehsystems bestehend aus Reichardt-Detektoren simuliert hatten, konnten wir feststellen, dass die Adaptation beim Bewegungssehen der Fliege ohne irgendeine Veränderung der so genannten intrinsischen Faktoren, wie z. B. der Zeitkonstanten, auskommt, also gewissermaßen automatisch funktioniert."

Das Ergebnis der Modell-Simulationen von Alexander Borst, Virginia Flanagin und Haim Sompolinsky bedeutet, dass das bisherige Verständnis von Adaptation neu überdacht werden muss. "Es ist durchaus möglich, dass wir mit unserem Ergebnis auch für die Adaptation in anderen Sinnessystemen völlig neue Erklärungen liefern könnten", so Borst. Der Max-Planck-Direktor ist fest davon überzeugt, dass Computer-Modelle für die Sinnesphysiologie unerlässlich sind, um die hochfeinen Regulationen und Abläufe zu verstehen, die sich die Natur ausgedacht hat.

Verwandte Links:

[1] Pressemitteilung vom 19.5.2004: "Fliegen erweitern ihren Horizont"
www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2004/pressemitteilung20040519/index.html

Eva-Maria Diehl | idw
Weitere Informationen:
http://www.neuro.mpg.de
http://www.mpg.de

Weitere Berichte zu: Adaptation Bewegungssehen Fliege Nervenzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Darmflora beeinflusst das Altern
21.04.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten