Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschung für den Menschen

06.04.2005


Die Max-Planck-Gesellschaft veröffentlicht die Forschungsperspektiven 2005


Altern, neue Infektionskrankheiten, Gehirnforschung, Stammzellenforschung: Diese vier Themen haben bei den Wissenschaftlern der Max-Planck-Gesellschaft einen hohen Stellenwert in der Diskussion über unsere Zukunft und damit auch für jeden einzelnen Bürger. Denn wer möchte nicht wissen, wie er bis ins hohe Alter fit bleiben oder sich vor Infektionen bei Reisen in fremde Länder schützen kann? Den wissenschaftlichen Status quo der biologisch-medizinisch orientierten Forschungsschwerpunkte und die Fragestellungen der nächsten Jahre fassen die Kapitel "Gesundheit", "Altern", "Komplexes Netzwerk Gehirn", "Theorie und Modellierung" und "Biologische Strukturen" zusammen.

Kaum ein Gebiet der Biomedizin wird derzeit so kontrovers diskutiert wie die Stammzellenforschung, die einerseits große Erwartungen für innovative Behandlungsverfahren weckt, andererseits aber zu Skepsis führt. Nach Schätzungen könnte nahezu die Hälfte der Bevölkerung von der Stammzellforschung profitieren - entsprechend groß sind die Hoffnungen direkt und indirekt Betroffener. Im Mittelpunkt der Diskussion steht die Frage, ob die durch einen pathologischen Zellabbau verursachten Erkrankungen mit therapeutisch eingesetzten adulten und embryonalen Stammzellen behandelt oder gar kuriert werden können. Eine Antwort darauf geben die Wissenschaftler im Kapitel Gesundheit.


Eine der größten Zukunftsaufgaben der Medizin ist die Krankheitsprävention, um den Menschen ein möglichst langes und gesundes Leben zu ermöglichen. Hier kommt der Infektionsbiologie eine wichtige Rolle zu: Sie beschäftigt sich mit dem komplexen Zusammenspiel mikrobieller Krankheitserreger und deren menschlichem Wirt. Gerät diese Wechselbeziehung aus dem Gleichgewicht, werden pathologische Prozesse in Gang gesetzt, die nach neueren Forschungsergebnissen auch an der Entstehung von Demenzen und Herzkreislauferkrankungen mitwirken. Das in den Max-Planck-Instituten erarbeitete Detailwissen soll künftig besser zwischen Grundlagen- und praktischer Therapieforschung vernetzt werden. Die Max-Planck-Gesellschaft will daher ihr Aufgabenfeld an der Schnittstelle zwischen Grundlagenforschung und klinischer Anwendung neu definieren und klinische wie industrielle Partner in diesen Prozess einbeziehen (Kapitel Gesundheit).

Institut zur Alternsforschung

Obwohl in den industrialisierten Gesellschaften und der Dritten Welt die Menschen immer länger leben und ein höheres Durchschnittsalter erreichen, sind die genetischen wie biochemischen Mechanismen des normalen Alterns weit gehend unbekannt. Um die Wissenschaft auf diesem Gebiet in entscheidendem Maß voranzubringen, hat die Max-Planck-Gesellschaft zwei neue Forschungsinitiativen beschlossen (Kapitel Altern): Die Gründung eines Instituts zur interdisziplinären Erforschung der biologischen Grundlagen des Alterns und das "MaxNet Aging", ein auf fünf Jahre angelegtes internationales Netzwerk zur Erforschung des Alterns in den Verhaltens-, Sozial- und Geisteswissenschaften. Langfristiges Ziel des Instituts für Biologie des Alterns ist es, durch Verständnis molekularer Prozesse und exogener Einflüsse die Bedingungen für ein "gesundes Altern" zu verstehen. Untersuchungen an Modellorganismen sollen mit einer vergleichenden Genom-Analyse bei Menschen verknüpft werden. Dafür sollen in den nächsten Jahren rund 3000 über 90 Jahre alte Geschwisterpaare über ihre Lebensgewohnheiten befragt und um Blutproben gebeten werden.

Neurowissenschaften

Die vergangenen Jahrzehnte haben den Neurowissenschaften weltweit einen enormen Aufschwung verschafft. Auch die Max-Planck-Gesellschaft hat diesen Bereich zu einem Schwerpunkt ausgebaut. Folgende Fragen werden in Zukunft vorrangig erforscht: Wie entwickelt sich das Gehirn und besonders die Großhirnrinde? Was ist durch die Gene festgelegt und was wird durch Erfahrung und Lernen "eingeprägt"? Wie lassen sich kognitive Funktionen erforschen, und welche Beiträge liefern tierexperimentelle Befunde? Wie unterscheidet sich die geistige Leistungsfähigkeit in der Jugend und im Alter?

Da die neurokognitive Forschung von hochkomplexen Technologien abhängt, die jedoch nicht schlüsselfertig bereit stehen, beschäftigen sich die Wissenschaftler an den Max-Planck-Instituten auch mit der technischen Weiterentwicklung von Methoden der virtuellen Realität und der Magnetresonanztomografie. Ein Durchbruch hier würde die neurokognitive Forschung erheblich voranbringen (Kapitel Komplexes Netzwerk Gehirn).

Interdisziplinäre Zusammenarbeit

Das neue Forschungsgebiet der Systembiologie erstellt auf der Grundlage vorhandener Daten theoretische Modelle für biologische Systeme und ihr Verhalten. Die Ergebnisse werden experimentell getestet, um so Anhaltspunkte für die Verfeinerung des Modells zu erhalten. Das mit diesem Vorgehen entstehende Verständnis der Systemeigenschaften biologischer Prozesse - im Großen wie im Kleinen - hat große Auswirkungen auf die medizinische Forschung: Je klarer es ist, welche Prozesse von einer Krankheit betroffen sind, desto zielgerichteter können therapeutische Eingriffe entwickelt werden.

Verschiedene Max-Planck-Institute befassen sich heute mit komplexen Systemen und deren Eigenschaften. Mehrere Institute der Biologisch-Medizinischen Sektion arbeiten in Richtung Systembiologie. Das Verständnis der komplexen biologischen Prozesse stellt jedoch eine Herausforderung an viele naturwissenschaftliche Disziplinen dar. Die spannendsten Resultate sind durch interdisziplinäre Zusammenarbeit zu erzielen, bei der sich insbesondere Physiker, Ingenieure und Biologen einander ergänzen. Intensive Kontakte zwischen den biomedizinischen Instituten und denen der Chemisch-Physikalisch-Technischen Sektion (CPTS) sind den MPG-Experten zufolge erforderlich, um zu neuen Durchbrüchen zu gelangen. (Kapitel Theorie und Modellierung).

Die Strukturbiologie befasst sich mit dem räumlichen Aufbau der großen Moleküle - besonders mit den Proteinen, aus denen jeder Organismus besteht und die ihn überhaupt zum Leben befähigen. Ziel der Forscherinnen und Forscher ist es, möglichst die Lage jedes einzelnen Atoms in den Proteinen zu bestimmen. Das ist eine notwendige, wenn auch nicht immer hinreichende Bedingung für das genaue Verständnis der Aufgaben, die sie im Organismus übernehmen. Die Strukturen der Zellbausteine werden mit den zueinander komplementären Methoden der Proteinkristallografie, Elektronenmikroskopie und NMR-Spektroskopie bestimmt, die an Instituten der Max-Planck-Gesellschaft angewendet und weiterentwickelt werden. Besondere Aufmerksamkeit finden dabei solche Fragen, die sich den Routineverfahren der "hypothesenfreien Forschung" entziehen. Die Aufklärung von Struktur und Wirkungsmechanismen der wichtigsten Proteine und ihrer Verbände wird die Grundlagenforschung in der Max-Planck-Gesellschaft noch lange Zeit beschäftigen (Kapitel Biologische Strukturen).

Molekulare Sonden

In der chemischen Genomik werden hochspezifische Molekülsonden als leistungsfähige Werkzeuge der biologischen und biomedizinischen Forschung eingesetzt. Solche kleinen, biologisch aktiven chemischen Substanzen können aus dem Materialreservoir der Natur oder mittels kombinatorischer Chemie gefunden werden. Diese Verbindung chemischer und biologischer Methoden eröffnet einerseits für die Grundlagenforschung im Bereich der Biowissenschaften ganz neue Möglichkeiten. Andererseits kann sie einen tief greifenden Einfluss auf die Umsetzung der gewonnenen grundlegenden Erkenntnisse in den Anwendungsbereichen haben. Besser als rein genetische und molekularbiologische Verfahren erlauben die bei der chemischen Genomik identifizierten Substanzen eine systemische Untersuchung ganzer Zellen und Organismen im Hinblick auf die medizinische Relevanz biologischer Forschung. Wenn der biologische Effekt ausreichend studiert und in punkto therapeutische Relevanz geklärt ist, wird die niedermolekulare Substanz als Leitstruktur zur Entwicklung potenzieller Wirkstoffe dienen. Mehrere Max-Planck-Institute arbeiten zusammen, um solche molekulare Sonden für biologische Untersuchungen zu entwickeln (Kapitel Gesundheit).

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Altern Grundlagenforschung Max-Planck-Institut Organismus Protein Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise