Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Antibiotika: Mikroorganismen mit eigenen Waffen schlagen

06.04.2005


Schlüssel zur Generierung zahlreicher neuer Peptidantibiotika gefunden - Marburger Forscher untersuchten die Kommunikation in Multienzymkomplexen - Patentanmeldung bereits erfolgt



Zunehmende Resistenz und schnelle Anpassungsfähigkeit von Krankheitserregern gegenüber Antibiotika erfordern die kontinuierliche und rasche Entwicklung neuer Wirkstoffe. Den Biochemikern Dr. Torsten Stachelhaus und Dr. Martin Hahn vom Fachgebiet Chemie der Philipps-Universität Marburg ist es nun gelungen, das Zusammenspiel der Enzyme aufzuklären, die an der Antibiotikabildung in Mikroorganismen beteiligt sind, und es sogar zu steuern. Dadurch hat sich die Möglichkeit eröffnet, auf schnellem Wege zahlreiche neuartige Peptidantibiotika zu erzeugen, die dann als Wirkstoffkandidaten für die Verwendung beim Menschen untersucht werden können.



"Unser Ziel ist es", so Hahn, "die Mikroorganismen mit ihren eigenen Waffen zu schlagen und ihre eigenen Maschinerien zur Erzeugung neuartiger Medikamente auszunutzen." Die Marburger Forscher haben ihre bereits zum Patent angemeldeten Erkenntnisse kürzlich im US-amerikanischen Wissenschaftsjournal PNAS (Proceedings of the National Academy of Sciences) unter dem Titel "Selective interaction in nonribosomal peptide synthetases is facilitated by short communication mediating domains" (PNAS Vol. 101, 11/2004) veröffentlicht.

Montageplatz mit mindestens drei Arbeitern: Synthesemaschinerie der Peptidantibiotika

Peptidantibiotika - die von vielen Mikroorganismen wie Bakterien und Pilzen als Produkte des Sekundärstoffwechsels erzeugt werden - verfügen über ein breites Wirkungsspektrum in der Medizin. Daher richtete sich das Interesse der Marburger Forscher auf ihren Entstehungsprozess. Normalerweise erfolgt die Biosynthese von Proteinen an speziellen Zellorganellen, den Ribosomen. Diese übersetzen eine im Erbgut gespeicherte, genetische Information in eine Aminosäurekette. Peptidantibiotika werden dagegen an so genannten nichtribosomalen Peptidsynthetasen gebildet.

Deren Syntheseprinzip ähnelt in mancher Hinsicht einem Montageband. Mehrere hintereinander geschaltete Montageplätze (katalytische Enzyme) sorgen dafür, dass jeweils ein bestimmtes Bauteil (Aminosäure) ausgewählt, bearbeitet und in das wachsende Produkt (Peptidantibiotikum) eingebaut wird. Jeder Montageplatz ist dabei mit mindestens drei Arbeitern besetzt, die sich die Arbeitsschritte "Greifen", "Bearbeiten" und "Montieren" teilen. Jeder Arbeiter am Band entspricht, zurückübersetzt in die Welt der Moleküle, einer bestimmten katalytischen Struktur oder Domäne innerhalb der Peptidsynthetasen.

Gegenüber der "normalen" ribosomalen Proteinbiosynthese steht der nichtribosomalen Synthese ein größerer Vorrat an Bauteilen zur Verfügung. Sie ist nämlich in der Lage, neben natürlichen L-Aminosäuren auch deren Spiegelbilder sowie unnatürliche Aminosäuren einzubauen. (Als natürliche Aminosäuren werden dabei diejenigen 21 Aminosäuren bezeichnet, auf denen alle Proteine basieren, die vom menschlichen Körper erzeugt werden. Alle anderen sind "unnatürlich".) Darüber hinaus finden sich an einigen Montageplätzen weitere Arbeiter, die einen Baustein zusätzlich modifizieren können und so eine noch größere Produktvielfalt erzeugen können.

Vielfalt neuer Antibiotika durch Neuarrangements

In den meisten Mikroorganismen erfolgt der Zusammenbau der Peptidantibiotika sogar gleich an mehreren Montagebändern, es wirken also mehrere Peptidsynthetasen auf geordnete Weise in einem so genannten Biosynthesekomplex zusammen. Torsten Stachelhaus und Martin Hahn gelang es nun, die strukturelle Basis dieser Interaktion zwischen verschiedenen Synthetasen innerhalb eines Komplexes aufzuklären. Dadurch war es ihnen möglich, die Reihenfolge der Synthetasen innerhalb eines Komplexes neu zu arrangieren. Außerdem erreichten sie, dass selbst Enzyme aus unterschiedlichen Biosynthesekomplexen miteinander kommunizieren. Um im Bild des Montagebands zu bleiben: Arbeiter können ihr Produkt nun nicht mehr nur an ihren Nebenmann, sondern auch an andere Kollegen selbst an anderen Montagebändern weiter reichen. Das Ergebnis: Die Produktvielfalt wächst und damit die Zahl der produzierten Peptidantibiotika, die schließlich auf ihre Wirkung beim Menschen getestet werden können.

Diese neu gewonnene Vielfalt ist sehr Erfolg versprechend. Denn bereits auf natürlichem Wege nutzen Mikroorganismen den Montagebandmechanismus für die Synthese sehr wirksamer Peptidwirkstoffe wie zum Beispiel das klassische Antibiotikum Penicillin. Auch so moderne Vertreter wie das Reserveantibiotikum Vancomycin oder das nach Organtransplantationen verabreichte, möglichen Abstoßungsreaktionen des Körpers entgegenwirkende, Immunsuppressivum Cyclosporin A werden "am Montageband" hergestellt. Einige der nun neu hinzukommenden Peptidantibiotika, so ist zu erwarten, dürften sich daher ebenfalls als sehr wirkungsvoll erweisen.

Künftige Anwendungen

Durch die Aufklärung der strukturellen Basis, die für die spezifische Interaktion zwischen zwei Synthetasen verantwortlich ist, bietet sich eine Vielzahl von Möglichkeiten, um im Reagenzglas (in vitro) wie auch direkt in der Zelle (in vivo) neue Peptidantibiotika zu erzeugen. Durch geeignete Manipulationen der entsprechenden Montagebänder können auch einzelne Bausteine innerhalb eines Peptidantibiotikums gezielt verändert werden. Auf diese Weise ließen sich zum Beispiel bereits bekannte Wirkstoffe in ihrer Struktur modifizieren, um deren Wirkungseigenschaften zu verbessern.

Darüber hinaus bietet sich die Möglichkeit, auf zufälligem Wege neue Biosynthesekomplexe zu erzeugen, die wiederum völlig neuartige Peptide mit unterschiedlichster Wirkung und Spezifität hervorbringen könnten. Somit erschließen die jüngsten Forschungsergebnisse von Stachelhaus und Hahn zahlreiche neue Möglichkeiten sowohl für die gezielte als auch die kombinatorische Entwicklung neuartiger Wirkstoffkandidaten.

Thilo Körkel | idw
Weitere Informationen:
http://www.chemie.uni-marburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Studie für Patienten mit Prostatakrebs: Einteilung in genomische Gruppen soll Therapie präzisieren

21.08.2017 | Interdisziplinäre Forschung

Forscher entwickeln zweidimensionalen Kristall mit hoher Leitfähigkeit

21.08.2017 | Physik Astronomie

Ein neuer Indikator für marine Ökosystem-Veränderungen - der Dia/Dino-Index

21.08.2017 | Ökologie Umwelt- Naturschutz