Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum Gene von Mutter und Vater verschieden kodiert werden - Der kleine aber wichtige Unterschied

26.07.2001


Die Forschungsergebnisse von Prof. Jörn Walter eröffnen neue Einblicke in die Steuerung von Genen im Verlauf der Entwicklung des Lebens. Weitreichende Erkenntnisse auf Gebieten der molekularen Medizin, der Pharmazie und Landwirtschaft werden erwartet.
Der Saarbrücker Genetiker, dessen Arbeiten in führenden wissenschaftlichen Zeitschriften (Nature Genetic, Nature, Science (Sonderheft im August zum Thema Epigenetik) veröffentlicht wurden, koordiniert gemeinsam mit Essener Kollegen das neue Schwerpunktprogramm "Epigenetik" der Deutschen Forschungsgesellschaft, das im Frühjahr 2002 beginnen wird.

Direkt nach der Zeugung neuen Lebens, also mit der Befruchtung der Eizelle, beginnt auf molekularer Ebene eine Auseinandersetzung zwischen Mutter und Vater um die Steuerung bestimmter Gene, die für die Entwicklung des Kindes entscheidend sind. "Man kann diesen Vorgang durchaus als einen Kampf der Geschlechter bezeichnen," so Professor Jörn Walter, der im letzten Jahr vom Max-Planck-Institut für molekulare Genetik in Berlin an den Saarbrücker Campus wechselte. Seine Erkenntnisse über die Steuerungsmechanismen dieser Gene werden neue Diagnose- und Behandlungsmethoden bei verschiedenen Krankheiten ermöglichen. Vermutlich werden sie auch dazu beitragen, bislang unerklärbare Probleme und Risiken bei künstlicher Befruchtung, Stammzellforschung oder beim Klonen zu verstehen.

Sobald Spermium und Eizelle verschmolzen sind, werden die genetischen Programme der elterlichen Chromosomen angeschaltet: Auf diese Weise beginnt die faszinierend geordnete Entwicklung eines Organismus aus einer einzigen Zelle durch Tausende von Zellteilungen und Differenzierungsschritte. Die Information der etwa 30.000 bis 40.000 Gene unseres Genoms muss hierfür ähnlich wie Dateien in einem Computer je nach Bedarf aufgerufen und abgelesen werden. Das heißt auch: Nicht alle Gen-Dateien sind gleichzeitig angeschaltet. Komplexe Steuerungstechniken machen es möglich, dass die Informationen der Gene geordnet angeschaltet und abgelesen werden können.
Mit einer Art dieser molekularen "Schalter", die die Natur zum An- und Abschalten der Gene einsetzt, befasst sich Professor Walter.
Als Schalter dienen winzige chemische Veränderungen bei den abgeschalteten Genen: Sie sind markiert durch Methylgruppen bestehend aus jeweils einem Kohlenstoff- und drei Wasserstoffatomen, die an bestimmte Bausteine (Basen) der Gene angeheftet werden.
Als Folge dieser Markierung (Methylierung) wird die Erbsubstanz (die Desoxyribonukleinsäure = DNA) im Bereich der Gene dichter "verpackt" und gleichsam unzugänglich gemacht. Faktoren, die normalerweise die Gene ablesen, können hier nicht mehr zugreifen. Das Genom wird an diesen Stellen quasi mit einem Passwort geschützt.

Entlang der Chromosomen werden diese Markierungen an den notwendigen Stellen gesetzt und damit eine Art "Methylierungs-Ablese-Code" geschaffen. So entsteht eine für jede Zelle charakteristische Landkarte solcher Codes mit ablesbaren und nicht ablesbaren Abschnitten.
Professor Jörn Walter hat gemeinsam mit Forscherkollegen eine Technik entwickelt, die es möglich macht, diese Landkarten zu lesen: Die Markierungen entlang der Chromosomen können mit Hilfe dieses Verfahrens kartographiert werden. Solche Markierungskarten werden in Zukunft einen wichtigen Beitrag leisten, um korrekt und falsch programmierte Zellen unterscheiden zu können. "Wir schauen quasi in die Zellen hinein und sehen, ob die Ablese-Programme fehlerhaft oder korrekt etabliert wurden," erklärt Prof. Walter.

Der Vorteil dieser Methylierungscodes für einen Organismus liegt auf der Hand: Die Zahl der Gene, die aktiv gehalten werden, kann eingeschränkt werden, die Gene sind aber nach wie vor vorhanden und können je nach Bedarf wieder in den aktiven Zustand überführt werden. Hierzu muss die Markierung natürlich wieder entfernt werden.
Normalerweise werden die Methylierungsmuster bei der Zellteilung von Mutter- zu Tochterzelle eins zu eins weitergegeben, so dass der abgeschaltete Zustand sozusagen vererbt wird. Man bezeichnet diese Markierung daher auch als "epigenetisch", das heißt als einen oberhalb der Gene liegenden Vererbungsmechanismus. Diese Vererbung (Kopieren) der Methylierung wird aber - falls notwendig - von Zeit zu Zeit gestoppt, was zu Veränderungen in der Ablesbarkeit der Gene führt.

Lange Zeit ging man davon aus, dass das Entfernen der Markierungen lediglich auf einem Verlust dieser Kopierfunktion beruht.
Als erste weltweit konnten Jörn Walter und seine Arbeitsgruppe (in Zusammenarbeit mit Forschern in Berlin und Cambridge, England) nun nachweisen, dass es neben dem Verlust der Kopierfunktion auch aktive Mechanismen gibt, die solche Markierungen in einer Zelle sehr schnell auslöschen können! Die Forscher beobachteten, dass am Beginn des Lebens, kurz nach der Befruchtung der Eizelle eine aktive Ent-Methylierungs-Welle an den Chromosomen stattfindet: Wie mit einer Schere schneiden bestimmte Eiweißmoleküle, so genannte Enzyme, die Methylierungen von den Bausteinen der DNA wieder ab. Besonders erstaunlich ist dabei, dass dieser Vorgang nur auf den väterlichen Chromosomen stattfindet, obwohl sich gleichzeitig auch die methylierten mütterlichen Chromosomen in einer Zelle befinden. Die mütterlichen Chromosomen bleiben zunächst unangetastet und behalten ihr Methylierungsmuster.

Die Frage, warum die beiden Chromosomensätze so unterschiedlich behandelt werden, ist noch nicht abschließend zu beantworten. "Es gibt jedoch eine Erklärung, die einen evolutionären Sinn machen würde," so Prof. Walter: "Etwa 100 unserer menschlichen Gene stehen im Widerspruch zu den Mendelschen Regeln, die besagen, dass Gene gleichartig funktionstüchtig jeweils von Mutter und Vater vererbt werden: Diese Gene erhalten eine elterliche Prägung und als Folge dieser Prägung sind nur die mütterlichen oder väterlichen Kopien dieser Gene aktiv. Also obwohl in jeder Zelle je eine mütterliche und eine väterliche Kopie vorliegt, ist nur eine dieser Kopien aktiv. Die andere wird durch Markierung (Methylierung) abgeschaltet."
Bei diesen 100 Gene handelt es sich um Gene, die vornehmlich das Wachstum und das Verhalten beeinflussen. Väterlich aktive Gene sind dabei solche, die Wachstum fördern bzw. bestimmte Verhaltensmuster unterstützen - die mütterlich aktiven Gene dagegen sind sozusagen die direkten Gegenspieler, indem sie z.B. das Wachstum unterdrücken.
Vereinfacht gesagt ist es daher im Sinne des Vaters, solche Gene zu methylieren und abzuschalten, die z.B. Wachstum unterdrücken. "Vermutlich entstand im Verlauf der Evolution daher in der Eizelle ein Ent-Methylierungsmechanismus, um Markierungen, die vom Vater über die Keimbahn (Spermien) eingeschleust werden, entgegen zu wirken," erklärt Prof. Walter: "Die Eizelle hat ´Waffen` entwickelt, die den Methylierungs-Code des väterlichen Erbguts aktiv entfernen, den eigenen mütterlichen aber nicht. In diesem Fall ´ent-methyliert´ die befruchtete Eizelle aktiv das männliche Genom, schützt sich aber selbst davor! Wenn man so will, ein früher Geschlechter-Kampf."

Jetzt arbeiten Forscher aus aller Welt, darunter natürlich auch die Entdecker des Phänomens, an der Frage, nach welchem "Bauplan" und mit welchem Zweck im Laufe der Entwicklung des Lebens Erbinformation durch Methylierung ab-, und durch die Ent-Methylierung wieder angeschaltet wird.
Vor allem auch die asymetrische Ent-Methylierung beim väterlichen Erbgut steht dabei im Zentrum des Interesses. Möglicherweise beeinflusst diese Asymmetrie die Gene in den Körperzellen, bei denen nur die Erbinformation des Vaters oder der Mutter abgelesen werden soll. Sicher ist bereits heute, dass diese Vorgänge beim "Programmablauf des Lebens" erhebliche Bedeutung haben, und dass fehlerhafte Methylierungs-Codes und darauf beruhende Lesefehler gravierende Folgen haben können. So können Entwicklungsstörungen auftreten, etwa beim Wachstum, aber auch im Verhalten. Immunkrankheiten oder Krebs können durch fehlerhaft "vererbte" epigenetische Programme entstehen.
Insbesondere bei der Bekämpfung solcher Krankheiten wird diese Forschung neue Erkenntnisse, Diagnose- und Therapieformen ermöglichen. Auch wird erwartet, dass die häufig beobachteten Entwicklungsstörungen bei künstlicher Befruchtung oder beim Klonen auf falschen Reprogrammierungs-Ereignissen beruhen.

Die Deutsche Forschungsgemeinschaft (DFG) richtet ab Frühjahr 2002 ein Schwerpunktprogramm zum Thema Epigenetik für einen Zeitraum von sechs Jahren ein, das Prof. Walter initiiert hat. Neben seiner Beteiligung in der Forschung wird der Saarbrücker Wissenschaftler das Schwerpunktprogramm gemeinsam mit seinem Essener Kollegen Prof. Bernhard Horsthemke auch koordinieren. Im Zentrum des Schwerpunktprogramms werden Imprinting und menschliche Erkrankungen, epigenetische Vererbung und Reprogrammierung bei Säugern sowie epigenetische Prozesse in Modellorganismen stehen.

Sie haben Fragen? Dann setzen Sie sich bitte in Verbindung mit Professor
Jörn Walter:
Tel.: (+49) (0)681 302 2425
Fax.: (+49) (0) 681 302 2703
E-Mail.: j.walter@mx.uni-saarland.de

Claudia Brettar | idw

Weitere Berichte zu: Befruchtung Chromosom Eizelle Gen Markierung Methylierung Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie