Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum Gene von Mutter und Vater verschieden kodiert werden - Der kleine aber wichtige Unterschied

26.07.2001


Die Forschungsergebnisse von Prof. Jörn Walter eröffnen neue Einblicke in die Steuerung von Genen im Verlauf der Entwicklung des Lebens. Weitreichende Erkenntnisse auf Gebieten der molekularen Medizin, der Pharmazie und Landwirtschaft werden erwartet.
Der Saarbrücker Genetiker, dessen Arbeiten in führenden wissenschaftlichen Zeitschriften (Nature Genetic, Nature, Science (Sonderheft im August zum Thema Epigenetik) veröffentlicht wurden, koordiniert gemeinsam mit Essener Kollegen das neue Schwerpunktprogramm "Epigenetik" der Deutschen Forschungsgesellschaft, das im Frühjahr 2002 beginnen wird.

Direkt nach der Zeugung neuen Lebens, also mit der Befruchtung der Eizelle, beginnt auf molekularer Ebene eine Auseinandersetzung zwischen Mutter und Vater um die Steuerung bestimmter Gene, die für die Entwicklung des Kindes entscheidend sind. "Man kann diesen Vorgang durchaus als einen Kampf der Geschlechter bezeichnen," so Professor Jörn Walter, der im letzten Jahr vom Max-Planck-Institut für molekulare Genetik in Berlin an den Saarbrücker Campus wechselte. Seine Erkenntnisse über die Steuerungsmechanismen dieser Gene werden neue Diagnose- und Behandlungsmethoden bei verschiedenen Krankheiten ermöglichen. Vermutlich werden sie auch dazu beitragen, bislang unerklärbare Probleme und Risiken bei künstlicher Befruchtung, Stammzellforschung oder beim Klonen zu verstehen.

Sobald Spermium und Eizelle verschmolzen sind, werden die genetischen Programme der elterlichen Chromosomen angeschaltet: Auf diese Weise beginnt die faszinierend geordnete Entwicklung eines Organismus aus einer einzigen Zelle durch Tausende von Zellteilungen und Differenzierungsschritte. Die Information der etwa 30.000 bis 40.000 Gene unseres Genoms muss hierfür ähnlich wie Dateien in einem Computer je nach Bedarf aufgerufen und abgelesen werden. Das heißt auch: Nicht alle Gen-Dateien sind gleichzeitig angeschaltet. Komplexe Steuerungstechniken machen es möglich, dass die Informationen der Gene geordnet angeschaltet und abgelesen werden können.
Mit einer Art dieser molekularen "Schalter", die die Natur zum An- und Abschalten der Gene einsetzt, befasst sich Professor Walter.
Als Schalter dienen winzige chemische Veränderungen bei den abgeschalteten Genen: Sie sind markiert durch Methylgruppen bestehend aus jeweils einem Kohlenstoff- und drei Wasserstoffatomen, die an bestimmte Bausteine (Basen) der Gene angeheftet werden.
Als Folge dieser Markierung (Methylierung) wird die Erbsubstanz (die Desoxyribonukleinsäure = DNA) im Bereich der Gene dichter "verpackt" und gleichsam unzugänglich gemacht. Faktoren, die normalerweise die Gene ablesen, können hier nicht mehr zugreifen. Das Genom wird an diesen Stellen quasi mit einem Passwort geschützt.

Entlang der Chromosomen werden diese Markierungen an den notwendigen Stellen gesetzt und damit eine Art "Methylierungs-Ablese-Code" geschaffen. So entsteht eine für jede Zelle charakteristische Landkarte solcher Codes mit ablesbaren und nicht ablesbaren Abschnitten.
Professor Jörn Walter hat gemeinsam mit Forscherkollegen eine Technik entwickelt, die es möglich macht, diese Landkarten zu lesen: Die Markierungen entlang der Chromosomen können mit Hilfe dieses Verfahrens kartographiert werden. Solche Markierungskarten werden in Zukunft einen wichtigen Beitrag leisten, um korrekt und falsch programmierte Zellen unterscheiden zu können. "Wir schauen quasi in die Zellen hinein und sehen, ob die Ablese-Programme fehlerhaft oder korrekt etabliert wurden," erklärt Prof. Walter.

Der Vorteil dieser Methylierungscodes für einen Organismus liegt auf der Hand: Die Zahl der Gene, die aktiv gehalten werden, kann eingeschränkt werden, die Gene sind aber nach wie vor vorhanden und können je nach Bedarf wieder in den aktiven Zustand überführt werden. Hierzu muss die Markierung natürlich wieder entfernt werden.
Normalerweise werden die Methylierungsmuster bei der Zellteilung von Mutter- zu Tochterzelle eins zu eins weitergegeben, so dass der abgeschaltete Zustand sozusagen vererbt wird. Man bezeichnet diese Markierung daher auch als "epigenetisch", das heißt als einen oberhalb der Gene liegenden Vererbungsmechanismus. Diese Vererbung (Kopieren) der Methylierung wird aber - falls notwendig - von Zeit zu Zeit gestoppt, was zu Veränderungen in der Ablesbarkeit der Gene führt.

Lange Zeit ging man davon aus, dass das Entfernen der Markierungen lediglich auf einem Verlust dieser Kopierfunktion beruht.
Als erste weltweit konnten Jörn Walter und seine Arbeitsgruppe (in Zusammenarbeit mit Forschern in Berlin und Cambridge, England) nun nachweisen, dass es neben dem Verlust der Kopierfunktion auch aktive Mechanismen gibt, die solche Markierungen in einer Zelle sehr schnell auslöschen können! Die Forscher beobachteten, dass am Beginn des Lebens, kurz nach der Befruchtung der Eizelle eine aktive Ent-Methylierungs-Welle an den Chromosomen stattfindet: Wie mit einer Schere schneiden bestimmte Eiweißmoleküle, so genannte Enzyme, die Methylierungen von den Bausteinen der DNA wieder ab. Besonders erstaunlich ist dabei, dass dieser Vorgang nur auf den väterlichen Chromosomen stattfindet, obwohl sich gleichzeitig auch die methylierten mütterlichen Chromosomen in einer Zelle befinden. Die mütterlichen Chromosomen bleiben zunächst unangetastet und behalten ihr Methylierungsmuster.

Die Frage, warum die beiden Chromosomensätze so unterschiedlich behandelt werden, ist noch nicht abschließend zu beantworten. "Es gibt jedoch eine Erklärung, die einen evolutionären Sinn machen würde," so Prof. Walter: "Etwa 100 unserer menschlichen Gene stehen im Widerspruch zu den Mendelschen Regeln, die besagen, dass Gene gleichartig funktionstüchtig jeweils von Mutter und Vater vererbt werden: Diese Gene erhalten eine elterliche Prägung und als Folge dieser Prägung sind nur die mütterlichen oder väterlichen Kopien dieser Gene aktiv. Also obwohl in jeder Zelle je eine mütterliche und eine väterliche Kopie vorliegt, ist nur eine dieser Kopien aktiv. Die andere wird durch Markierung (Methylierung) abgeschaltet."
Bei diesen 100 Gene handelt es sich um Gene, die vornehmlich das Wachstum und das Verhalten beeinflussen. Väterlich aktive Gene sind dabei solche, die Wachstum fördern bzw. bestimmte Verhaltensmuster unterstützen - die mütterlich aktiven Gene dagegen sind sozusagen die direkten Gegenspieler, indem sie z.B. das Wachstum unterdrücken.
Vereinfacht gesagt ist es daher im Sinne des Vaters, solche Gene zu methylieren und abzuschalten, die z.B. Wachstum unterdrücken. "Vermutlich entstand im Verlauf der Evolution daher in der Eizelle ein Ent-Methylierungsmechanismus, um Markierungen, die vom Vater über die Keimbahn (Spermien) eingeschleust werden, entgegen zu wirken," erklärt Prof. Walter: "Die Eizelle hat ´Waffen` entwickelt, die den Methylierungs-Code des väterlichen Erbguts aktiv entfernen, den eigenen mütterlichen aber nicht. In diesem Fall ´ent-methyliert´ die befruchtete Eizelle aktiv das männliche Genom, schützt sich aber selbst davor! Wenn man so will, ein früher Geschlechter-Kampf."

Jetzt arbeiten Forscher aus aller Welt, darunter natürlich auch die Entdecker des Phänomens, an der Frage, nach welchem "Bauplan" und mit welchem Zweck im Laufe der Entwicklung des Lebens Erbinformation durch Methylierung ab-, und durch die Ent-Methylierung wieder angeschaltet wird.
Vor allem auch die asymetrische Ent-Methylierung beim väterlichen Erbgut steht dabei im Zentrum des Interesses. Möglicherweise beeinflusst diese Asymmetrie die Gene in den Körperzellen, bei denen nur die Erbinformation des Vaters oder der Mutter abgelesen werden soll. Sicher ist bereits heute, dass diese Vorgänge beim "Programmablauf des Lebens" erhebliche Bedeutung haben, und dass fehlerhafte Methylierungs-Codes und darauf beruhende Lesefehler gravierende Folgen haben können. So können Entwicklungsstörungen auftreten, etwa beim Wachstum, aber auch im Verhalten. Immunkrankheiten oder Krebs können durch fehlerhaft "vererbte" epigenetische Programme entstehen.
Insbesondere bei der Bekämpfung solcher Krankheiten wird diese Forschung neue Erkenntnisse, Diagnose- und Therapieformen ermöglichen. Auch wird erwartet, dass die häufig beobachteten Entwicklungsstörungen bei künstlicher Befruchtung oder beim Klonen auf falschen Reprogrammierungs-Ereignissen beruhen.

Die Deutsche Forschungsgemeinschaft (DFG) richtet ab Frühjahr 2002 ein Schwerpunktprogramm zum Thema Epigenetik für einen Zeitraum von sechs Jahren ein, das Prof. Walter initiiert hat. Neben seiner Beteiligung in der Forschung wird der Saarbrücker Wissenschaftler das Schwerpunktprogramm gemeinsam mit seinem Essener Kollegen Prof. Bernhard Horsthemke auch koordinieren. Im Zentrum des Schwerpunktprogramms werden Imprinting und menschliche Erkrankungen, epigenetische Vererbung und Reprogrammierung bei Säugern sowie epigenetische Prozesse in Modellorganismen stehen.

Sie haben Fragen? Dann setzen Sie sich bitte in Verbindung mit Professor
Jörn Walter:
Tel.: (+49) (0)681 302 2425
Fax.: (+49) (0) 681 302 2703
E-Mail.: j.walter@mx.uni-saarland.de

Claudia Brettar | idw

Weitere Berichte zu: Befruchtung Chromosom Eizelle Gen Markierung Methylierung Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besserer Schutz vor Gebärmutterhalskrebs
28.09.2016 | Helmholtz-Zentrum für Infektionsforschung

nachricht Neuer Schalter entscheidet zwischen Reparatur und Zelltod
28.09.2016 | Universität zu Köln

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der perfekte Sonnensturm

Ein geomagnetischer Sturm hat sich als Glücksfall für die Wissenschaft erwiesen. Jahrzehnte rätselte die Forschung, wie hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam mit einem internationalen Team eine Erklärung gefunden: Entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits: „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen.“ Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: Neuer Schalter entscheidet zwischen Reparatur und Zelltod

Eine der wichtigsten Entscheidungen, die eine Zelle zu treffen hat, ist eine Frage von Leben und Tod: kann ein Schaden repariert werden oder ist es sinnvoller zellulären Selbstmord zu begehen um weitere Schädigung zu verhindern? In einer Kaskade eines bisher wenig verstandenen Signalweges konnten Forscher des Exzellenzclusters für Alternsforschung CECAD an der Universität zu Köln ein Protein identifizieren (UFD-2), das eine Schlüsselrolle in dem Prozess einnimmt. Die Ergebnisse wurden in der Fachzeitschrift Nature Structural & Molecular Biology veröffentlicht.

Die genetische Information einer jeden Zelle liegt in ihrer Sequenz der DNA-Doppelhelix. Doppelstrangbrüche der DNA, die durch Strahlung hervorgerufen werden...

Im Focus: Forscher entwickeln quantenphotonischen Schaltkreis mit elektrischer Lichtquelle

Optische Quantenrechner könnten die Computertechnologie revolutionieren. Forschern um Wolfram Pernice von der Westfälischen Wilhelms-Universität Münster sowie Ralph Krupke, Manfred Kappes und Carsten Rockstuhl vom Karlsruher Institut für Technologie ist es nun gelungen, einen quantenoptischen Versuchsaufbau auf einem Chip zu platzieren. Damit haben sie eine Voraussetzung erfüllt, um photonische Schaltkreise für optische Quantencomputer nutzbar machen zu können.

Ob für eine abhörsichere Datenverschlüsselung, die ultraschnelle Berechnung riesiger Datenmengen oder die sogenannte Quantensimulation, mit der hochkomplexe...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

EEHE 2017 – Strom statt Benzin. Experten diskutieren die Umsetzung neuester Fahrzeugkonzepte. Call vor Papers endet am 31.10.2016!

28.09.2016 | Veranstaltungen

Folgenschwere Luftverschmutzung: Forum zur Chemie der Atmosphäre

28.09.2016 | Veranstaltungen

European Health Forum Gastein 2016 beginnt

28.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EEHE 2017 – Strom statt Benzin. Experten diskutieren die Umsetzung neuester Fahrzeugkonzepte. Call vor Papers endet am 31.10.2016!

28.09.2016 | Veranstaltungsnachrichten

Wie Blockchain die Finanzwelt verändert

28.09.2016 | Wirtschaft Finanzen

Neue Plasmaanlage - Präzise und hoch entwickelte Chips

28.09.2016 | Physik Astronomie