Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht in’s Dunkle hitzestabiler Proteine

31.05.2000


Der Bayreuther Biochemiker Dieter Perl konnte, zusammen mit Kollegen vom Max-Delbrück-Centrum für molekulare Medizin in Berlin, jetzt zeigen, wodurch die Thermostabilität eines bakteriellen Kälteschockproteins
(relativ zu seinem mesophilen Homologen) verursacht wird. Systematische Mutagenesen und Stabilitätsmessungen ergaben, daß die stark erhöhte Stabilität dieses Proteins auf lediglich zwei Austauschen geladener Aminosäuren an der Proteinoberfläche zurückgeführt werden kann.

Biochemische Forschung
Licht in’s Dunkle hitzestabiler Proteine
Optimierung im Ladungsmuster an der Proteinoberfläche spielt große Rolle

Bayreuth (UBT) Extremophile sind Mikroorganismen, die unter extremen äußeren Bedingungen wachsen können. Sie sind von großer Bedeutung in der Biotechnologie, da sie äußerst stabile Proteine mit hohem technischen Nutzen produzieren. Viele Enzyme, die in Biochemie und Molekularbiologie verwendet werden, stammen aus Extremophilen.

Zu den Extremophilen zählen vor allem die thermophilen Mikroorganismen, deren optimale Wachstumstemperaturen zum Teil weit über 50°C liegen. Die Proteine aus diesen Organismen sind sehr hitzeresistent. Ihre geordnete Raumstruktur, die Voraussetzung für die korrekte Funktion ist, bleibt selbst bei sehr hohen Temperaturen erhalten und ermöglicht diesen Organismen das Überleben unter diesen extremen Umweltbedingungen.

Woraus resultiert die hohe Stabilität dieser Proteine? Die Beantwortung dieser Frage ist von großem Interesse in der Biochemie, weil es dann möglich wäre,die Stabilität empfindlicher Proteine, und damit ihren technischen Nutzen, zu verbessern. Die molekularen Ursachen der Thermostabilität von Proteinen liegen allerdings noch weitgehend im Dunkeln, da sich homologe Proteine aus mesophilen und thermophilen Organismen meist sehr stark in ihrem Aufbau, d. h. in ihrer Aminosäuresequenz unterscheiden.

Der Bayreuther Biochemiker Dieter Perl in der Arbeitsgruppe von Prof. Dr. Franz-Xaver Schmid konnte, zusammen mit Kollegen vom Max-Delbrück-Centrum für molekulare Medizin in Berlin, nun zeigen, wodurch die Thermostabilität eines bakteriellen Kälteschockproteins (relativ zu seinem mesophilen Homologen) verursacht wird (Nature Structural Biology 7, 380-383 (2000)). Systematische Mutagenesen und Stabilitätsmessungen ergaben, daß die stark erhöhte Stabilität dieses Proteins auf lediglich zwei Austauschen geladener Aminosäuren an der Proteinoberfläche zurückgeführt werden kann. Alle anderen Sequenzunterschiede zwischen den beiden Proteinen sind lediglich das Produkt neutraler evolutionärer Divergenz und haben mit der Thermostabilität nichts zu tun. Aus dieser Arbeit wird klar, daß Optimierungen im Ladungsmuster an der Proteinoberfläche für die Thermostabilität eine große Rolle spielen.

Interessanterweise konnte das wenig stabile mesophile Kälteschockprotein durch die Einführung von nur diesen beiden Aminosäuren fast genauso stabil gemacht werden wie das thermophile Protein. Diese Erkenntnis, dass wenige Mutationen zur Verbesserung der elektrostatischen Wechselwirkungen genügen, um ein Protein so stabil wie sein thermophiles Homologes zu machen, werden von den Wissenschaftlern als sehr ermutigend für die Entwicklung von Strategien zur Proteinstabilisierung eingeschätzt.

M. A. Jürgen Abel |

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics