Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einblicke in den dynamischen Aufbau der molekularen Spleißmaschine

18.03.2005


Zwei Ansichten der dreidimensionalen Struktur des U11/U12 di-snRNP, die mittels der dreidimensionalen Kryo-Elektronenmikroskopie bestimmt wurde. Einzelne Proteindomänen sind farblich hinterlegt. (Quelle: Stark/MPIbpc)


Wie aus der genetischen Information einer Zelle Proteine erzeugt werden, ist gegenwärtig ein zentrales Thema biochemischer Forschung. Eine besondere Rolle spielen dabei "Spleißosomen", kleine molekulare Maschinen, die Stücke aus der RNA ausschneiden und neu aneinander heften. Wissenschaftlern am MPI für biophysikalische Chemie in Göttingen sind mit elektronenmikroskopischen Methoden jetzt erste Einblicke in den molekularen Aufbau eines Spleißosoms gelungen. (Molecular Cell, 18.3.2005)


Die genetische Information (DNA) in einer Zelle dient als Vorlage zur Synthese von Proteinen. Dabei wird zuerst die DNA in eine so genannte Boten-RNA (mRNA) übersetzt. Die Information der mRNA wird dann direkt für die Synthese von Proteinen verwendet. Ein wichtiger Schritt in dieser Kette vom Gen zum Protein ist die Prozessierung der mRNA in ein für die Synthese geeigneten, reifen Zustand. Dafür müssen Sequenzbereiche aus der so genannten prä-mRNA herausgeschnitten werden, die nicht für die Protein-Synthese vorgesehen sind. Dieses Herausschneiden wird beim Menschen von den so genannten Spleißosomen punktgenau durchgeführt. Diese Spleißosomen werden in einem hochdynamischen Assemblierungsweg aus kleineren Bausteinen zusammengesetzt, über den bisher auf dreidimensionaler Ebene wenig bekannt ist. Wissenschaftlern des Max-Planck-Instituts für biophysikalische Chemie ist es jetzt gelungen, die dreidimensionale Struktur eines der Hauptspieler des Spleißosoms zu bestimmen und so erste visuelle Einblicke in die frühen Assemblierungsschritte des Spleißosoms zu gewinnen.

Das Herausschneiden der für die Proteinsynthese nicht benötigten Sequenzen (Introns) und das Zusammenfügen der für die Proteinsynthese relevanten Sequenzen (Exons) wird in Analogie zum Verbinden von offenen Seilenden auch als "Spleißen" bezeichnet. Das Spleißen stellt einen bedeutenden Prozess zur außerordentlichen Erhöhung der Proteinvielfalt dar, da durch unterschiedliche Verknüpfung und Überspringen von Exons verschiedene Proteine mit unterschiedlichen Eigenschaften aus einem einzelnen Gen erhalten werden können. Welche besondere Bedeutung das Spleißen für den Menschen hat, wird deutlich bei Betrachtung der Vielzahl von Krankheiten, die mit Fehlfunktionen des Spleißprozesses assoziiert sind. Hierzu zählen unter anderem bestimmte Formen der Retinitis pigmentosa, einer Krankheit, die zur Erblindung führen kann, die spinale Muskelatrophie Werdnig-Hoffmann, einer Erkrankung der Nervenzellen des Rückenmarks, die innerhalb der ersten Lebensjahre tödlich verlaufen kann, sowie bestimmte Formen von bösartigen Tumoren.


Für ein vertieftes Verständnis des Spleißvorganges und somit auch für die Möglichkeit, aus diesem Wissen neue therapeutische Ansätze zu entwickeln, ist es notwendig, die Funktion und Dynamik des zugrundeliegenden Prozesses zu kennen. Hierbei spielt die Bestimmung der dreidimensionalen Struktur eine wichtige Rolle. In einer früheren Studie (vgl. Pressemitteilung vom 26.05.2003) konnten Wissenschaftler des Max-Planck-Instituts bereits einen ersten Einblick in das Herz der molekularen Spleißmaschine gewinnen und einzelne Proteindichten zentralen Schlüsselproteinen zuordnen. Hierbei stellte sich heraus, dass eines der Proteine des so genannten Spleißfaktors 3b (SF3b), das sich direkt am katalytisch aktiven Zentrum des Spleißosoms befindet, im Inneren des Komplexes, vollständig umgeben von weiteren Proteindichten, lokalisiert ist. Diese bemerkenswerte Architektur des Komplexes warf die mechanistische Frage auf, wie die prä-mRNA in das Innere des Komplexes gelangen könnte. Wissenschaftler des Max-Planck-Institutes für biophysikalische Chemie in Göttingen konnten jetzt den Mechanismus auf der dreidimensionalen Ebene entschlüsseln.

In Zusammenarbeit mit Dr. Cindy Will aus der Abteilung von Prof. Reinhard Lührmann konnten Monika Golas und Björn Sander aus der Arbeitsgruppe von Dr. Holger Stark im Rahmen ihrer Doktorarbeiten die dreidimensionale Struktur des sogenannten U11/U12 di-snRNPs, eines der Hauptakeure des minoren Spleißosoms, mit einer Auflösung von etwa 1 Millionstel Millimeter mit Hilfe der Kryo-Elektronenmikroskopie bestimmen (Abbildung). Das Elektronenmikroskop wird hierbei, ähnlich wie bei der Computertomographie in der Medizin, zur Aufnahme von zweidimensionalen Projektionsbildern verwendet, die anschließend mittels in der Arbeitsgruppe neu entwickelter Computerprogramme in dreidimensionale Strukturen zurückgerechnet werden können. Aufgrund der hohen Auflösung konnten in dem nur maximal 26 Millionstel Millimeter großen Partikel direkt wichtige Proteine zugeordnet und ein Modell für den Aufbau der frühen Formen des Spleißosoms im Rahmen seiner Assemblierung entwickelt werden. Demnach liegt der Schlüssel zum Mechanismus der prä-mRNA-Bindung in einer Öffnung der Struktur des SF3bs. Hierdurch wird das zentrale Protein des SF3bs an die Oberfläche verlagert und kann so direkt mit der prä-mRNA interagieren. Zukünftige Studien sind zur Klärung geplant, wie und an welchen Schritten die struktuelle Änderung vorgenommen wird und welche Komponenten daran beteiligt sind.

Dr. Christoph Nothdurft | idw
Weitere Informationen:
http://www.mpibpc.mpg.de
http://www.mpg.de

Weitere Berichte zu: Protein SF3b Spleißmaschine Spleißosom Synthese

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten