Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einblicke in den dynamischen Aufbau der molekularen Spleißmaschine

18.03.2005


Zwei Ansichten der dreidimensionalen Struktur des U11/U12 di-snRNP, die mittels der dreidimensionalen Kryo-Elektronenmikroskopie bestimmt wurde. Einzelne Proteindomänen sind farblich hinterlegt. (Quelle: Stark/MPIbpc)


Wie aus der genetischen Information einer Zelle Proteine erzeugt werden, ist gegenwärtig ein zentrales Thema biochemischer Forschung. Eine besondere Rolle spielen dabei "Spleißosomen", kleine molekulare Maschinen, die Stücke aus der RNA ausschneiden und neu aneinander heften. Wissenschaftlern am MPI für biophysikalische Chemie in Göttingen sind mit elektronenmikroskopischen Methoden jetzt erste Einblicke in den molekularen Aufbau eines Spleißosoms gelungen. (Molecular Cell, 18.3.2005)


Die genetische Information (DNA) in einer Zelle dient als Vorlage zur Synthese von Proteinen. Dabei wird zuerst die DNA in eine so genannte Boten-RNA (mRNA) übersetzt. Die Information der mRNA wird dann direkt für die Synthese von Proteinen verwendet. Ein wichtiger Schritt in dieser Kette vom Gen zum Protein ist die Prozessierung der mRNA in ein für die Synthese geeigneten, reifen Zustand. Dafür müssen Sequenzbereiche aus der so genannten prä-mRNA herausgeschnitten werden, die nicht für die Protein-Synthese vorgesehen sind. Dieses Herausschneiden wird beim Menschen von den so genannten Spleißosomen punktgenau durchgeführt. Diese Spleißosomen werden in einem hochdynamischen Assemblierungsweg aus kleineren Bausteinen zusammengesetzt, über den bisher auf dreidimensionaler Ebene wenig bekannt ist. Wissenschaftlern des Max-Planck-Instituts für biophysikalische Chemie ist es jetzt gelungen, die dreidimensionale Struktur eines der Hauptspieler des Spleißosoms zu bestimmen und so erste visuelle Einblicke in die frühen Assemblierungsschritte des Spleißosoms zu gewinnen.

Das Herausschneiden der für die Proteinsynthese nicht benötigten Sequenzen (Introns) und das Zusammenfügen der für die Proteinsynthese relevanten Sequenzen (Exons) wird in Analogie zum Verbinden von offenen Seilenden auch als "Spleißen" bezeichnet. Das Spleißen stellt einen bedeutenden Prozess zur außerordentlichen Erhöhung der Proteinvielfalt dar, da durch unterschiedliche Verknüpfung und Überspringen von Exons verschiedene Proteine mit unterschiedlichen Eigenschaften aus einem einzelnen Gen erhalten werden können. Welche besondere Bedeutung das Spleißen für den Menschen hat, wird deutlich bei Betrachtung der Vielzahl von Krankheiten, die mit Fehlfunktionen des Spleißprozesses assoziiert sind. Hierzu zählen unter anderem bestimmte Formen der Retinitis pigmentosa, einer Krankheit, die zur Erblindung führen kann, die spinale Muskelatrophie Werdnig-Hoffmann, einer Erkrankung der Nervenzellen des Rückenmarks, die innerhalb der ersten Lebensjahre tödlich verlaufen kann, sowie bestimmte Formen von bösartigen Tumoren.


Für ein vertieftes Verständnis des Spleißvorganges und somit auch für die Möglichkeit, aus diesem Wissen neue therapeutische Ansätze zu entwickeln, ist es notwendig, die Funktion und Dynamik des zugrundeliegenden Prozesses zu kennen. Hierbei spielt die Bestimmung der dreidimensionalen Struktur eine wichtige Rolle. In einer früheren Studie (vgl. Pressemitteilung vom 26.05.2003) konnten Wissenschaftler des Max-Planck-Instituts bereits einen ersten Einblick in das Herz der molekularen Spleißmaschine gewinnen und einzelne Proteindichten zentralen Schlüsselproteinen zuordnen. Hierbei stellte sich heraus, dass eines der Proteine des so genannten Spleißfaktors 3b (SF3b), das sich direkt am katalytisch aktiven Zentrum des Spleißosoms befindet, im Inneren des Komplexes, vollständig umgeben von weiteren Proteindichten, lokalisiert ist. Diese bemerkenswerte Architektur des Komplexes warf die mechanistische Frage auf, wie die prä-mRNA in das Innere des Komplexes gelangen könnte. Wissenschaftler des Max-Planck-Institutes für biophysikalische Chemie in Göttingen konnten jetzt den Mechanismus auf der dreidimensionalen Ebene entschlüsseln.

In Zusammenarbeit mit Dr. Cindy Will aus der Abteilung von Prof. Reinhard Lührmann konnten Monika Golas und Björn Sander aus der Arbeitsgruppe von Dr. Holger Stark im Rahmen ihrer Doktorarbeiten die dreidimensionale Struktur des sogenannten U11/U12 di-snRNPs, eines der Hauptakeure des minoren Spleißosoms, mit einer Auflösung von etwa 1 Millionstel Millimeter mit Hilfe der Kryo-Elektronenmikroskopie bestimmen (Abbildung). Das Elektronenmikroskop wird hierbei, ähnlich wie bei der Computertomographie in der Medizin, zur Aufnahme von zweidimensionalen Projektionsbildern verwendet, die anschließend mittels in der Arbeitsgruppe neu entwickelter Computerprogramme in dreidimensionale Strukturen zurückgerechnet werden können. Aufgrund der hohen Auflösung konnten in dem nur maximal 26 Millionstel Millimeter großen Partikel direkt wichtige Proteine zugeordnet und ein Modell für den Aufbau der frühen Formen des Spleißosoms im Rahmen seiner Assemblierung entwickelt werden. Demnach liegt der Schlüssel zum Mechanismus der prä-mRNA-Bindung in einer Öffnung der Struktur des SF3bs. Hierdurch wird das zentrale Protein des SF3bs an die Oberfläche verlagert und kann so direkt mit der prä-mRNA interagieren. Zukünftige Studien sind zur Klärung geplant, wie und an welchen Schritten die struktuelle Änderung vorgenommen wird und welche Komponenten daran beteiligt sind.

Dr. Christoph Nothdurft | idw
Weitere Informationen:
http://www.mpibpc.mpg.de
http://www.mpg.de

Weitere Berichte zu: Protein SF3b Spleißmaschine Spleißosom Synthese

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie